

Welcome to the BLUES documentation!

	Introduction
	Github

	Publication

	Theory

	Installation
	Stable Releases

	Development Builds

	Source Installation

	Modules
	Moves

	Simulation

	Integrators

	Utilities

	Reporters

	Formats

	Tutorial
	Introduction to BLUES

	Background

	YAML Configuration

	Running a BLUES simulation

Indices and tables

	Index

	Module Index

	Search Page

Introduction

[image: _images/blues.png]
 [https://github.com/MobleyLab/blues]BLUES is a python package that takes advantage of non-equilibrium candidate Monte Carlo moves (NCMC) to help sample between different ligand binding modes.

Github

Github

 Installation

Installation

BLUES is compatible with MacOSX/Linux with Python>=3.5 (blues<1.1 still works with Python 2.7)

This is a python tool kit with a few dependencies. We recommend installing
miniconda [http://conda.pydata.org/miniconda.html]. Then you can create an
environment with the following commands:

conda create -n blues python=3.5
source activate blues

Stable Releases

The recommended way to install BLUES would be to install from conda.

conda install -c mobleylab blues

Development Builds

Alternatively, you can install the latest development build. Development builds
contain the latest commits/PRs not yet issued in a point release.

conda install -c mobleylab/label/dev blues

In order to use the SideChainMove class you will need OpenEye Toolkits and
some related tools.

conda install -c openeye/label/Orion -c omnia oeommtools packmol
conda install -c openeye openeye-toolkits

Source Installation

Although we do NOT recommend it, you can also install directly from the
source code.

git clone https://github.com/MobleyLab/blues.git
conda install -c omnia -c conda-forge openmmtools=0.15.0 openmm=7.2.2 numpy cython
pip install -e .

To validate your BLUES installation run the tests.

pip instal -e .[tests]
pytest -v -s

 Modules

Modules

Moves

Provides the main Move class which allows definition of moves
which alter the positions of subsets of atoms in a context during a BLUES
simulation, in order to increase sampling.
Also provides functionality for CombinationMove definitions which consist of
a combination of other pre-defined moves such as via instances of Move.

Authors: Samuel C. Gill

Contributors: Nathan M. Lim, Kalistyn Burley, David L. Mobley

Move

	
class blues.moves.Move

	This is the base Move class. Move provides methods for calculating properties
and applying the move on the set of atoms being perturbed in the NCMC simulation.

	
initializeSystem(system, integrator)

	If the system or integrator needs to be modified to perform the move
(ex. adding a force) this method is called during the start
of the simulation to change the system or integrator to accomodate that.

	Parameters

	
	system (openmm.System) – System to be modified.

	integrator (openmm.Integrator) – Integrator to be modified.

	Returns

	
	system (openmm.System) – The modified System object.

	integrator (openmm.Integrator) – The modified Integrator object.

	
beforeMove(context)

	This method is called at the start of the NCMC portion if the
context needs to be checked or modified before performing the move
at the halfway point.

	Parameters

	context (openmm.Context) – Context containing the positions to be moved.

	Returns

	context (openmm.Context) – The same input context, but whose context were changed by this function.

	
afterMove(context)

	This method is called at the end of the NCMC portion if the
context needs to be checked or modified before performing the move
at the halfway point.

	Parameters

	context (openmm.Context) – Context containing the positions to be moved.

	Returns

	context (openmm.Context) – The same input context, but whose context were changed by this function.

	
move(context)

	This method is called at the end of the NCMC portion if the
context needs to be checked or modified before performing the move
at the halfway point.

	Parameters

	context (openmm.Context) – Context containing the positions to be moved.

	Returns

	context (openmm.Context) – The same input context, but whose context were changed by this function.

RandomLigandRotationMove

	
class blues.moves.RandomLigandRotationMove(structure, resname='LIG', random_state=None)

	RandomLightRotationMove that provides methods for calculating properties on the
object ‘model’ (i.e ligand) being perturbed in the NCMC simulation.
Current methods calculate the object’s atomic masses and center of masss.
Calculating the object’s center of mass will get the positions
and total mass.

	Parameters

	
	resname (str) – String specifying the residue name of the ligand.

	structure (parmed.Structure) – ParmEd Structure object of the relevant system to be moved.

	random_state (integer or numpy.RandomState, optional) – The generator used for random numbers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator.

	
structure

	The structure of the ligand or selected atoms to be rotated.

	Type

	parmed.Structure

	
resname

	The residue name of the ligand or selected atoms to be rotated.

	Type

	str, default=’LIG’

	
topology

	The topology of the ligand or selected atoms to be rotated.

	Type

	openmm.Topology

	
atom_indices

	Atom indicies of the ligand.

	Type

	list

	
masses

	Particle masses of the ligand with units.

	Type

	list

	
totalmass

	Total mass of the ligand.

	Type

	int

	
center_of_mass

	Calculated center of mass of the ligand in XYZ coordinates. This should
be updated every iteration.

	Type

	numpy.array

	
positions

	Ligands positions in XYZ coordinates. This should be updated
every iteration.

	Type

	numpy.array

Examples

>>> from blues.move import RandomLigandRotationMove
>>> ligand = RandomLigandRotationMove(structure, 'LIG')
>>> ligand.resname
 'LIG'

	
getAtomIndices(structure, resname)

	Get atom indices of a ligand from ParmEd Structure.

	Parameters

	
	resname (str) – String specifying the residue name of the ligand.

	structure (parmed.Structure) – ParmEd Structure object of the atoms to be moved.

	Returns

	atom_indices (list of ints) – list of atoms in the coordinate file matching lig_resname

	
getMasses(topology)

	Returns a list of masses of the specified ligand atoms.

	Parameters

	topology (parmed.Topology) – ParmEd topology object containing atoms of the system.

	Returns

	
	masses (1xn numpy.array * simtk.unit.dalton) – array of masses of len(self.atom_indices), denoting
the masses of the atoms in self.atom_indices

	totalmass (float * simtk.unit.dalton) – The sum of the mass found in masses

	
getCenterOfMass(positions, masses)

	Returns the calculated center of mass of the ligand as a numpy.array

	Parameters

	
	positions (nx3 numpy array * simtk.unit compatible with simtk.unit.nanometers) – ParmEd positions of the atoms to be moved.

	masses (numpy.array) – numpy.array of particle masses

	Returns

	center_of_mass (numpy array * simtk.unit compatible with simtk.unit.nanometers) – 1x3 numpy.array of the center of mass of the given positions

	
move(context)

	Function that performs a random rotation about the
center of mass of the ligand.

	Parameters

	context (simtk.openmm.Context object) – Context containing the positions to be moved.

	Returns

	context (simtk.openmm.Context object) – The same input context, but whose positions were changed by this function.

MoveEngine

	
class blues.moves.MoveEngine(moves, probabilities=None)

	MoveEngine provides perturbation functions for the context during the NCMC
simulation.

	Parameters

	
	moves (blues.move object or list of N blues.move objects) – Specifies the possible moves to be performed.

	probabilities (list of floats, optional, default=None) – A list of N probabilities, where probabilities[i] corresponds to the
probaility of moves[i] being selected to perform its associated
move() method. If None, uniform probabilities are assigned.

	
moves

	Possible moves to be performed.

	Type

	blues.move or list of N blues.move objects

	
probabilities

	Normalized probabilities for each move.

	Type

	list of floats

	
selected_move

	Selected move to be performed.

	Type

	blues.move

	
move_name

	Name of the selected move to be performed

	Type

	str

Examples

Load a parmed.Structure, list of moves with probabilities, initialize
the MoveEngine class, and select a move from our list.

>>> import parmed
>>> from blues.moves import *
>>> structure = parmed.load_file('tests/data/eqToluene.prmtop', xyz='tests/data/eqToluene.inpcrd')
>>> probabilities = [0.25, 0.75]
>>> moves = [SideChainMove(structure, [111]),RandomLigandRotationMove(structure, 'LIG')]
>>> mover = MoveEngine(moves, probabilities)
>>> mover.moves
[<blues.moves.SideChainMove at 0x7f2eaa168470>,
 <blues.moves.RandomLigandRotationMove at 0x7f2eaaaa51d0>]
>>> mover.selectMove()
>>> mover.selected_move
<blues.moves.RandomLigandRotationMove at 0x7f2eaaaa51d0>

	
selectMove()

	Chooses the move which will be selected for a given NCMC
iteration

	
runEngine(context)

	Selects a random Move object based on its
assigned probability and and performs its move() function
on a context.

	Parameters

	context (openmm.Context) – OpenMM context whose positions should be moved.

	Returns

	context (openmm.Context) – OpenMM context whose positions have been moved.

Under Development

WARNING: The following move classes have not been tested. Use at your own risk.

	
class blues.moves.SideChainMove(structure, residue_list, verbose=False, write_move=False)

	NOTE: Usage of this class requires a valid OpenEye license.

SideChainMove provides methods for calculating properties needed to
rotate a sidechain residue given a parmed.Structure. Calculated properties
include: backbone atom indicies, atom pointers and indicies of the residue
sidechain, bond pointers and indices for rotatable heavy bonds in
the sidechain, and atom indices upstream of selected bond.

The class contains functions to randomly select a bond and angle to be rotated
and applies a rotation matrix to the target atoms to update their coordinates on the
object ‘model’ (i.e sidechain) being perturbed in the NCMC simulation.

	Parameters

	
	structure (parmed.Structure) – The structure of the entire system to be simulated.

	residue_list (list of int) – List of the residue numbers of the sidechains to be rotated.

	verbose (bool, default=False) – Enable verbosity to print out detailed information of the rotation.

	write_move (bool, default=False) – If True, writes a PDB of the system after rotation.

	
structure

	The structure of the entire system to be simulated.

	Type

	parmed.Structure

	
molecule

	The OEMolecule containing the sidechain(s) to be rotated.

	Type

	oechem.OEMolecule

	
residue_list

	List containing the residue numbers of the sidechains to be rotated.

	Type

	list of int

	
all_atoms

	List containing the atom indicies of the sidechains to be rotated.

	Type

	list of int

	
rot_atoms

	Dictionary of residues, bonds and atoms to be rotated

	Type

	dict

	
rot_bonds

	Dictionary containing the bond pointers of the rotatable bonds.

	Type

	dict of oechem.OEBondBase

	
qry_atoms

	Dictionary containing all the atom pointers (as OpenEye objects) that
make up the given residues.

	Type

	dict of oechem.OEAtomBase

Examples

>>> from blues.move import SideChainMove
>>> sidechain = SideChainMove(structure, [1])

	
getBackboneAtoms(molecule)

	Takes an OpenEye Molecule, finds the backbone atoms and
returns the indicies of the backbone atoms.

	Parameters

	molecule (oechem.OEMolecule) – The OEmolecule of the simulated system.

	Returns

	backbone_atoms (list of int) – List containing the atom indices of the backbone atoms.

	
getTargetAtoms(molecule, backbone_atoms, residue_list)

	Takes an OpenEye molecule and a list of residue numbers then
generates a dictionary containing all the atom pointers and indicies for the
non-backbone, atoms of those target residues, as well as a list of backbone atoms.
Note: The atom indicies start at 0 and are thus -1 from the PDB file indicies

	Parameters

	
	molecule (oechem.OEMolecule) – The OEmolecule of the simulated system.

	backbone_atoms (list of int) – List containing the atom indices of the backbone atoms.

	residue_list (list of int) – List containing the residue numbers of the sidechains to be rotated.

	Returns

	
	backbone_atoms (list of int) – List containing the atom indices of the backbone atoms to be rotated.

	qry_atoms (dict of oechem.OEAtomBase) – Dictionary containing all the atom pointers (as OpenEye objects) that
make up the given residues.

	
findHeavyRotBonds(pdb_OEMol, qry_atoms)

	Takes in an OpenEye molecule as well as a dictionary of atom locations (keys)
and atom indicies. It loops over the query atoms and identifies any heavy bonds associated with each atom.
It stores and returns the bond indicies (keys) and the two atom indicies for each bond in a dictionary
Note: atom indicies start at 0, so are offset by 1 compared to pdb)

	Parameters

	
	pdb_OEMol (oechem.OEMolecule) – The OEmolecule of the simulated system generated from a PDB file.

	qry_atoms (dict of oechem.OEAtomBase) – Dictionary containing all the atom pointers (as OpenEye objects) that
make up the given residues.

	Returns

	rot_bonds (dict of oechem.OEBondBase) – Dictionary containing the bond pointers of the rotatable bonds.

	
getRotAtoms(rotbonds, molecule, backbone_atoms)

	Function identifies and stores neighboring, upstream atoms for a given sidechain bond.

	Parameters

	
	rot_bonds (dict of oechem.OEBondBase) – Dictionary containing the bond pointers of the rotatable bonds.

	molecule (oechem.OEMolecule) – The OEmolecule of the simulated system.

	backbone_atoms (list of int) – List containing the atom indices of the backbone atoms.

	Returns

	rot_atom_dict (dict of oechem.OEAtomBase) – Dictionary containing the atom pointers for a given sidechain bond.

	
getRotBondAtoms()

	This function is called on class initialization.

Takes in a PDB filename (as a string) and list of residue numbers. Returns
a nested dictionary of rotatable bonds (containing only heavy atoms), that are keyed by residue number,
then keyed by bond pointer, containing values of atom indicies [axis1, axis2, atoms to be rotated]
Note: The atom indicies start at 0, and are offset by -1 from the PDB file indicies

	Returns

	
	rot_atoms (dict) – Dictionary of residues, bonds and atoms to be rotated

	rot_bonds (dict of oechem.OEBondBase) – Dictionary containing the bond pointers of the rotatable bonds.

	qry_atoms (dict of oechem.OEAtomBase) – Dictionary containing all the atom pointers (as OpenEye objects) that
make up the given residues.

	
chooseBondandTheta()

	This function is called on class initialization.

Takes a dictionary containing nested dictionary, keyed by res#,
then keyed by bond_ptrs, containing a list of atoms to move, randomly selects a bond,
and generates a random angle (radians). It returns the atoms associated with the
the selected bond, the pointer for the selected bond and the randomly generated angle

	Returns

	
	theta_ran

	targetatoms

	res_choice

	bond_choice

	
rotation_matrix(axis, theta)

	Function returns the rotation matrix associated with counterclockwise rotation
about the given axis by theta radians.

	Parameters

	
	axis

	theta (float) – The angle of rotation in radians.

	
move(context, verbose=False)

	Rotates the target atoms around a selected bond by angle theta and updates
the atom coordinates in the parmed structure as well as the ncmc context object

	Parameters

	
	context (simtk.openmm.Context object) – Context containing the positions to be moved.

	verbose (bool, default=False) – Enable verbosity to print out detailed information of the rotation.

	Returns

	context (simtk.openmm.Context object) – The same input context, but whose positions were changed by this function.

	
class blues.moves.SmartDartMove(structure, basis_particles, coord_files, topology=None, dart_radius=Quantity(value=0.2, unit=nanometer), self_dart=False, resname='LIG')

	WARNING: This class has not been completely tested. Use at your own risk.

Move object that allows center of mass smart darting moves to be performed on a ligand,
allowing translations of a ligand between pre-defined regions in space. The
SmartDartMove.move() method translates the ligand to the locations of the ligand
found in the coord_files. These locations are defined in terms of the basis_particles.
These locations are picked with a uniform probability. Based on Smart Darting Monte Carlo [smart-dart]

	Parameters

	
	structure (parmed.Structure) – ParmEd Structure object of the relevant system to be moved.

	basis_particles (list of 3 ints) – Specifies the 3 indices of the protein whose coordinates will be used
to define a new set of basis vectors.

	coord_files (list of str) – List containing paths to coordinate files of the whole system for smart darting.

	topology (str, optional, default=None) – A path specifying a topology file matching the files in coord_files. Not
necessary if the coord_files already contain topologies (ex. PDBs).

	dart_radius (simtk.unit float object compatible with simtk.unit.nanometers unit,) – optional, default=0.2*simtk.unit.nanometers
The radius of the darting region around each dart.

	self_dart (boolean, optional, default=’False’) – When performing the center of mass darting in SmartDartMove.move(),this
specifies whether or not to include the darting region where the center
of mass currently resides as an option to dart to.

	resname (str, optional, default=’LIG’) – String specifying the residue name of the ligand.

References

	smart-dart

	I. Andricioaei, J. E. Straub, and A. F. Voter, J. Chem. Phys. 114, 6994 (2001).
https://doi.org/10.1063/1.1358861

	
dartsFromParmEd(coord_files, topology=None)

	Used to setup darts from a generic coordinate file, through MDtraj using the basis_particles to define
new basis vectors, which allows dart centers to remain consistant through a simulation.
This adds to the self.n_dartboard, which defines the centers used for smart darting.

	Parameters

	
	coord_files (list of str) – List containing coordinate files of the whole system for smart darting.

	topology (str, optional, default=None) – A path specifying a topology file matching the files in coord_files. Not
necessary if the coord_files already contain topologies.

	
move(context)

	Function for performing smart darting move with darts that
depend on particle positions in the system.

	Parameters

	context (simtk.openmm.Context object) – Context containing the positions to be moved.

	Returns

	context (simtk.openmm.Context object) – The same input context, but whose positions were changed by this function.

	
class blues.moves.CombinationMove(moves)

	WARNING: This class has not been completely tested. Use at your own risk.

Move object that allows Move object moves to be performed according to
the order in move_list. To ensure detailed balance, the moves have an equal
chance to be performed in listed or reverse order.

	Parameters

	moves (list of blues.move.Move)

	
move(context)

	Performs the move() functions of the Moves in move_list on
a context.

	Parameters

	context (simtk.openmm.Context object) – Context containing the positions to be moved.

	Returns

	context (simtk.openmm.Context object) – The same input context, but whose positions were changed by this function.

Simulation

Provides classes for setting up and running the BLUES simulation.

	SystemFactory : setup and modifying the OpenMM System prior to the simulation.

	SimulationFactory : generates the OpenMM Simulations from the System.

	BLUESSimulation : runs the NCMC+MD hybrid simulation.

	MonteCarloSimulation : runs a pure Monte Carlo simulation.

Authors: Samuel C. Gill
Contributors: Nathan M. Lim, Meghan Osato, David L. Mobley

SystemFactory

Methods

	
class blues.simulation.SystemFactory(structure, atom_indices, config=None)

	SystemFactory contains methods to generate/modify the OpenMM System object
required for generating the openmm.Simulation using a given
parmed.Structure()

Examples

Load Parmed Structure, select move type, initialize MoveEngine, and
generate the openmm.Systems

>>> structure = parmed.load_file('eqToluene.prmtop', xyz='eqToluene.inpcrd')
>>> ligand = RandomLigandRotationMove(structure, 'LIG')
>>> ligand_mover = MoveEngine(ligand)
>>> systems = SystemFactory(structure, ligand.atom_indices, config['system'])

The MD and alchemical Systems are generated and stored as an attribute

>>> systems.md
>>> systems.alch

Freeze atoms in the alchemical system

>>> systems.alch = SystemFactory.freeze_atoms(systems.alch,
 freeze_distance=5.0,
 freeze_center='LIG'
 freeze_solvent='HOH,NA,CL')

	Parameters

	
	structure (parmed.Structure) – A chemical structure composed of atoms, bonds, angles, torsions, and
other topological features.

	atom_indices (list of int) – Atom indicies of the move or designated for which the nonbonded forces
(both sterics and electrostatics components) have to be alchemically
modified.

	config (dict, parameters for generating the openmm.System for the MD) – and NCMC simulation. For complete parameters, see docs for generateSystem
and generateAlchSystem

	
static amber_selection_to_atomidx(structure, selection)

	Converts AmberMask selection [amber-syntax] to list of atom indices.

	Parameters

	
	structure (parmed.Structure()) – Structure of the system, used for atom selection.

	selection (str) – AmberMask selection that gets converted to a list of atom indices.

	Returns

	mask_idx (list of int) – List of atom indices.

References

	amber-syntax(1,2,3,4)

	
	Swails, ParmEd Documentation (2015). http://parmed.github.io/ParmEd/html/amber.html#amber-mask-syntax

	
static atomidx_to_atomlist(structure, mask_idx)

	Goes through the structure and matches the previously selected atom
indices to the atom type.

	Parameters

	
	structure (parmed.Structure()) – Structure of the system, used for atom selection.

	mask_idx (list of int) – List of atom indices.

	Returns

	atom_list (list of atoms) – The atoms that were previously selected in mask_idx.

	
classmethod generateSystem(structure, **kwargs)

	Construct an OpenMM System representing the topology described by the
prmtop file. This function is just a wrapper for parmed Structure.createSystem().

	Parameters

	
	structure (parmed.Structure()) – The parmed.Structure of the molecular system to be simulated

	nonbondedMethod (cutoff method) – This is the cutoff method. It can be either the NoCutoff,
CutoffNonPeriodic, CutoffPeriodic, PME, or Ewald objects from the
simtk.openmm.app namespace

	nonbondedCutoff (float or distance Quantity) – The nonbonded cutoff must be either a floating point number
(interpreted as nanometers) or a Quantity with attached units. This
is ignored if nonbondedMethod is NoCutoff.

	switchDistance (float or distance Quantity) – The distance at which the switching function is turned on for van
der Waals interactions. This is ignored when no cutoff is used, and
no switch is used if switchDistance is 0, negative, or greater than
the cutoff

	constraints (None, app.HBonds, app.HAngles, or app.AllBonds) – Which type of constraints to add to the system (e.g., SHAKE). None
means no bonds are constrained. HBonds means bonds with hydrogen are
constrained

	rigidWater (bool=True) – If True, water is kept rigid regardless of the value of constraints.
A value of False is ignored if constraints is not None.

	implicitSolvent (None, app.HCT, app.OBC1, app.OBC2, app.GBn, app.GBn2) – The Generalized Born implicit solvent model to use.

	implicitSolventKappa (float or 1/distance Quantity = None) – This is the Debye kappa property related to modeling saltwater
conditions in GB. It should have units of 1/distance (1/nanometers
is assumed if no units present). A value of None means that kappa
will be calculated from implicitSolventSaltConc (below)

	implicitSolventSaltConc (float or amount/volume Quantity=0 moles/liter) – If implicitSolventKappa is None, the kappa will be computed from the
salt concentration. It should have units compatible with mol/L

	temperature (float or temperature Quantity = 298.15 kelvin) – This is only used to compute kappa from implicitSolventSaltConc

	soluteDielectric (float=1.0) – The dielectric constant of the protein interior used in GB

	solventDielectric (float=78.5) – The dielectric constant of the water used in GB

	useSASA (bool=False) – If True, use the ACE non-polar solvation model. Otherwise, use no
SASA-based nonpolar solvation model.

	removeCMMotion (bool=True) – If True, the center-of-mass motion will be removed periodically
during the simulation. If False, it will not.

	hydrogenMass (float or mass quantity = None) – If not None, hydrogen masses will be changed to this mass and the
difference subtracted from the attached heavy atom (hydrogen mass
repartitioning)

	ewaldErrorTolerance (float=0.0005) – When using PME or Ewald, the Ewald parameters will be calculated
from this value

	flexibleConstraints (bool=True) – If False, the energies and forces from the constrained degrees of
freedom will NOT be computed. If True, they will (but those degrees
of freedom will still be constrained).

	verbose (bool=False) – If True, the progress of this subroutine will be printed to stdout

	splitDihedrals (bool=False) – If True, the dihedrals will be split into two forces – proper and
impropers. This is primarily useful for debugging torsion parameter
assignments.

	Returns

	openmm.System – System formatted according to the prmtop file.

Notes

This function calls prune_empty_terms if any Topology lists have
changed.

	
classmethod generateAlchSystem(system, atom_indices, softcore_alpha=0.5, softcore_a=1, softcore_b=1, softcore_c=6, softcore_beta=0.0, softcore_d=1, softcore_e=1, softcore_f=2, annihilate_electrostatics=True, annihilate_sterics=False, disable_alchemical_dispersion_correction=True, alchemical_pme_treatment='direct-space', suppress_warnings=True, **kwargs)

	Returns the OpenMM System for alchemical perturbations.
This function calls openmmtools.alchemy.AbsoluteAlchemicalFactory and
openmmtools.alchemy.AlchemicalRegion to generate the System for the
NCMC simulation.

	Parameters

	
	system (openmm.System) – The OpenMM System object corresponding to the reference system.

	atom_indices (list of int) – Atom indicies of the move or designated for which the nonbonded forces
(both sterics and electrostatics components) have to be alchemically
modified.

	annihilate_electrostatics (bool, optional) – If True, electrostatics should be annihilated, rather than decoupled
(default is True).

	annihilate_sterics (bool, optional) – If True, sterics (Lennard-Jones or Halgren potential) will be annihilated,
rather than decoupled (default is False).

	softcore_alpha (float, optional) – Alchemical softcore parameter for Lennard-Jones (default is 0.5).

	softcore_a, softcore_b, softcore_c (float, optional) – Parameters modifying softcore Lennard-Jones form. Introduced in
Eq. 13 of Ref. [TTPham-JChemPhys135-2011] (default is 1).

	softcore_beta (float, optional) – Alchemical softcore parameter for electrostatics. Set this to zero
to recover standard electrostatic scaling (default is 0.0).

	softcore_d, softcore_e, softcore_f (float, optional) – Parameters modifying softcore electrostatics form (default is 1).

	disable_alchemical_dispersion_correction (bool, optional, default=True) – If True, the long-range dispersion correction will not be included for the alchemical
region to avoid the need to recompute the correction (a CPU operation that takes ~ 0.5 s)
every time ‘lambda_sterics’ is changed. If using nonequilibrium protocols, it is recommended
that this be set to True since this can lead to enormous (100x) slowdowns if the correction
must be recomputed every time step.

	alchemical_pme_treatment (str, optional, default = ‘direct-space’) – Controls how alchemical region electrostatics are treated when PME is used.
Options are ‘direct-space’, ‘coulomb’, ‘exact’.
- ‘direct-space’ only models the direct space contribution
- ‘coulomb’ includes switched Coulomb interaction
- ‘exact’ includes also the reciprocal space contribution, but it’s
only possible to annihilate the charges and the softcore parameters
controlling the electrostatics are deactivated. Also, with this
method, modifying the global variable lambda_electrostatics is
not sufficient to control the charges. The recommended way to change
them is through the AlchemicalState class.

	Returns

	alch_system (alchemical_system) – System to be used for the NCMC simulation.

References

	TTPham-JChemPhys135-2011

	
	
	Pham and M. R. Shirts, J. Chem. Phys 135, 034114 (2011). http://dx.doi.org/10.1063/1.3607597

	
classmethod restrain_positions(structure, system, selection='(@CA,C,N)', weight=5.0, **kwargs)

	Applies positional restraints to atoms in the openmm.System
by the given parmed selection [amber-syntax].

	Parameters

	
	system (openmm.System) – The OpenMM System object to be modified.

	structure (parmed.Structure()) – Structure of the system, used for atom selection.

	selection (str, Default = “(@CA,C,N)”) – AmberMask selection to apply positional restraints to

	weight (float, Default = 5.0) – Restraint weight for xyz atom restraints in kcal/(mol A^2)

	Returns

	system (openmm.System) – Modified with positional restraints applied.

	
classmethod freeze_atoms(structure, system, freeze_selection=':LIG', **kwargs)

	Zeroes the masses of atoms from the given parmed selection [amber-syntax].
Massless atoms will be ignored by the integrator and will not change
positions.

	Parameters

	
	system (openmm.System) – The OpenMM System object to be modified.

	structure (parmed.Structure()) – Structure of the system, used for atom selection.

	freeze_selection (str, Default = “:LIG”) – AmberMask selection for the center in which to select atoms for
zeroing their masses.
Defaults to freezing protein backbone atoms.

	Returns

	system (openmm.System) – The modified system with the selected atoms

	
classmethod freeze_radius(structure, system, freeze_distance=Quantity(value=5.0, unit=angstrom), freeze_center=':LIG', freeze_solvent=':HOH,NA,CL', **kwargs)

	Zero the masses of atoms outside the given raidus of
the freeze_center parmed selection [amber-syntax]. Massless atoms will be ignored by the
integrator and will not change positions.This is intended to freeze
the solvent and protein atoms around the ligand binding site.

	Parameters

	
	system (openmm.System) – The OpenMM System object to be modified.

	structure (parmed.Structure()) – Structure of the system, used for atom selection.

	freeze_distance (float, Default = 5.0) – Distance (angstroms) to select atoms for retaining their masses.
Atoms outside the set distance will have their masses set to 0.0.

	freeze_center (str, Default = “:LIG”) – AmberMask selection for the center in which to select atoms for
zeroing their masses. Default: LIG

	freeze_solvent (str, Default = “:HOH,NA,CL”) – AmberMask selection in which to select solvent atoms for zeroing
their masses.

	Returns

	system (openmm.System) – Modified system with masses outside the freeze center zeroed.

SimulationFactory

Methods

	
class blues.simulation.SimulationFactory(systems, move_engine, config=None, md_reporters=None, ncmc_reporters=None)

	SimulationFactory is used to generate the 3 required OpenMM Simulation
objects (MD, NCMC, ALCH) required for the BLUES run. This class can take a
list of reporters for the MD or NCMC simulation in the arguments
md_reporters or ncmc_reporters.

	Parameters

	
	systems (blues.simulation.SystemFactory object) – The object containing the MD and alchemical openmm.Systems

	move_engine (blues.moves.MoveEngine object) – MoveEngine object which contains the list of moves performed
in the NCMC simulation.

	config (dict) – Simulation parameters which include:
nIter, nstepsNC, nstepsMD, nprop, propLambda, temperature, dt, propSteps, write_move

	md_reporters ((optional) list of Reporter objects for the MD openmm.Simulation)

	ncmc_reporters ((optional) list of Reporter objects for the NCMC openmm.Simulation)

Examples

Load Parmed Structure from our input files, select the move type,
initialize the MoveEngine, and generate the openmm systems.

>>> structure = parmed.load_file('eqToluene.prmtop', xyz='eqToluene.inpcrd')
>>> ligand = RandomLigandRotationMove(structure, 'LIG')
>>> ligand_mover = MoveEngine(ligand)
>>> systems = SystemFactory(structure, ligand.atom_indices, config['system'])

Now, we can generate the Simulations from our openmm Systems using the
SimulationFactory class. If a configuration is provided at on initialization,
it will call generateSimulationSet() for convenience. Otherwise, the class can be
instantiated like a normal python class.

Below is an example of initializing the class like a normal python object.

>>> simulations = SimulationFactory(systems, ligand_mover)
>>> hasattr(simulations, 'md')
False
>>> hasattr(simulations, 'ncmc')
False

Below, we provide a dict for configuring the Simulations and then
generate them by calling simulations.generateSimulationSet(). The MD/NCMC
simulation objects can be accessed separately as class attributes.

>>> sim_cfg = { 'platform': 'OpenCL',
 'properties' : { 'OpenCLPrecision': 'single',
 'OpenCLDeviceIndex' : 2},
 'nprop' : 1,
 'propLambda' : 0.3,
 'dt' : 0.001 * unit.picoseconds,
 'friction' : 1 * 1/unit.picoseconds,
 'temperature' : 100 * unit.kelvin,
 'nIter': 1,
 'nstepsMD': 10,
 'nstepsNC': 10,}
>>> simulations.generateSimulationSet(sim_cfg)
>>> hasattr(simulations, 'md')
True
>>> hasattr(simulations, 'ncmc')
True

After generating the Simulations, attach your own reporters by providing
the reporters in a list. Be sure to attach to either the MD or NCMC simulation.

>>> from simtk.openmm.app import StateDataReporter
>>> md_reporters = [StateDataReporter('test.log', 5)]
>>> ncmc_reporters = [StateDataReporter('test-ncmc.log', 5)]
>>> simulations.md = simulations.attachReporters(simulations.md, md_reporters)
>>> simulations.ncmc = simulations.attachReporters(simulations.ncmc, ncmc_reporters)

Alternatively, you can pass the configuration dict and list of reporters
upon class initialization. This will do all of the above for convenience.

>>> simulations = SimulationFactory(systems, ligand_mover, sim_cfg,
 md_reporters, ncmc_reporters)
>>> print(simulations)
>>> print(simulations.md)
>>> print(simulations.ncmc)
<blues.simulation.SimulationFactory object at 0x7f461b7a8b00>
<simtk.openmm.app.simulation.Simulation object at 0x7f461b7a8780>
<simtk.openmm.app.simulation.Simulation object at 0x7f461b7a87b8>
>>> print(simulations.md.reporters)
>>> print(simulations.ncmc.reporters)
[<simtk.openmm.app.statedatareporter.StateDataReporter object at 0x7f1b4d24cac8>]
[<simtk.openmm.app.statedatareporter.StateDataReporter object at 0x7f1b4d24cb70>]

	
classmethod addBarostat(system, temperature=Quantity(value=300, unit=kelvin), pressure=Quantity(value=1, unit=atmosphere), frequency=25, **kwargs)

	Adds a MonteCarloBarostat to the MD system.

	Parameters

	
	system (openmm.System) – The OpenMM System object corresponding to the reference system.

	temperature (float, default=300) – temperature (Kelvin) to be simulated at.

	pressure (int, configional, default=None) – Pressure (atm) for Barostat for NPT simulations.

	frequency (int, default=25) – Frequency at which Monte Carlo pressure changes should be attempted (in time steps)

	Returns

	system (openmm.System) – The OpenMM System with the MonteCarloBarostat attached.

	
classmethod generateIntegrator(temperature=Quantity(value=300, unit=kelvin), dt=Quantity(value=0.002, unit=picosecond), friction=1, **kwargs)

	Generates a LangevinIntegrator for the Simulations.

	Parameters

	
	temperature (float, default=300) – temperature (Kelvin) to be simulated at.

	friction (float, default=1) – friction coefficient which couples to the heat bath, measured in 1/ps

	dt (int, configional, default=0.002) – The timestep of the integrator to use (in ps).

	Returns

	integrator (openmm.LangevinIntegrator) – The LangevinIntegrator object intended for the System.

	
classmethod generateNCMCIntegrator(nstepsNC=None, alchemical_functions={'lambda_electrostatics': 'step(0.2-lambda) - 1/0.2*lambda*step(0.2-lambda) + 1/0.2*(lambda-0.8)*step(lambda-0.8)', 'lambda_sterics': 'min(1, (1/0.3)*abs(lambda-0.5))'}, splitting='H V R O R V H', temperature=Quantity(value=300, unit=kelvin), dt=Quantity(value=0.002, unit=picosecond), nprop=1, propLambda=0.3, **kwargs)

	Generates the AlchemicalExternalLangevinIntegrator using openmmtools.

	Parameters

	
	nstepsNC (int) – The number of NCMC relaxation steps to use.

	alchemical_functions (dict) – default = {‘lambda_sterics’ : ‘min(1, (1/0.3)*abs(lambda-0.5))’, lambda_electrostatics’ : ‘step(0.2-lambda) - 1/0.2*lambda*step(0.2-lambda) + 1/0.2*(lambda-0.8)*step(lambda-0.8)’}
key : value pairs such as “global_parameter” : function_of_lambda where function_of_lambda is a Lepton-compatible string that depends on the variable “lambda”.

	splitting (string, default: “H V R O R V H”) – Sequence of R, V, O (and optionally V{i}), and { }substeps to be executed each timestep. There is also an H option, which increments the global parameter lambda by 1/nsteps_neq for each step. Forces are only used in V-step. Handle multiple force groups by appending the force group index to V-steps, e.g. “V0” will only use forces from force group 0. “V” will perform a step using all forces. (will cause metropolization, and must be followed later by a).

	temperature (float, default=300) – temperature (Kelvin) to be simulated at.

	dt (int, optional, default=0.002) – The timestep of the integrator to use (in ps).

	nprop (int (Default: 1)) – Controls the number of propagation steps to add in the lambda
region defined by propLambda

	propLambda (float, optional, default=0.3) – The range which additional propogation steps are added,
defined by [0.5-propLambda, 0.5+propLambda].

	Returns

	ncmc_integrator (blues.integrator.AlchemicalExternalLangevinIntegrator) – The NCMC integrator for the alchemical process in the NCMC simulation.

	
classmethod generateSimFromStruct(structure, system, integrator, platform=None, properties={}, **kwargs)

	Generate the OpenMM Simulation objects from a given parmed.Structure()

	Parameters

	
	structure (parmed.Structure) – ParmEd Structure object of the entire system to be simulated.

	system (openmm.System) – The OpenMM System object corresponding to the reference system.

	integrator (openmm.Integrator) – The OpenMM Integrator object for the simulation.

	platform (str, default = None) – Valid choices: ‘Auto’, ‘OpenCL’, ‘CUDA’
If None is specified, the fastest available platform will be used.

	Returns

	simulation (openmm.Simulation) – The generated OpenMM Simulation from the parmed.Structure, openmm.System,
amd the integrator.

	
static attachReporters(simulation, reporter_list)

	Attach the list of reporters to the Simulation object

	Parameters

	
	simulation (openmm.Simulation) – The Simulation object to attach reporters to.

	reporter_list (list of openmm Reporeters) – The list of reporters to attach to the OpenMM Simulation.

	Returns

	simulation (openmm.Simulation) – The Simulation object with the reporters attached.

	
generateSimulationSet(config=None)

	Generates the 3 OpenMM Simulation objects.

	Parameters

	config (dict) – Dictionary of parameters for configuring the OpenMM Simulations

BLUESSimulation

	
class blues.simulation.BLUESSimulation(simulations, config=None)

	BLUESSimulation class provides methods to execute the NCMC+MD
simulation.

	Parameters

	
	simulations (blues.simulation.SimulationFactory object) – SimulationFactory Object which carries the 3 required
OpenMM Simulation objects (MD, NCMC, ALCH) required to run BLUES.

	config (dict) – Dictionary of parameters for configuring the OpenMM Simulations
If None, will search for configuration parameters on the simulations
object.

Examples

Create our SimulationFactory object and run BLUESSimulation

>>> sim_cfg = { 'platform': 'OpenCL',
 'properties' : { 'OpenCLPrecision': 'single',
 'OpenCLDeviceIndex' : 2},
 'nprop' : 1,
 'propLambda' : 0.3,
 'dt' : 0.001 * unit.picoseconds,
 'friction' : 1 * 1/unit.picoseconds,
 'temperature' : 100 * unit.kelvin,
 'nIter': 1,
 'nstepsMD': 10,
 'nstepsNC': 10,}
>>> simulations = SimulationFactory(systems, ligand_mover, sim_cfg)
>>> blues = BLUESSimulation(simulations)
>>> blues.run()

	
classmethod getStateFromContext(context, state_keys)

	Gets the State information from the given context and
list of state_keys to query it with.

Returns the state data as a dict.

	Parameters

	
	context (openmm.Context) – Context of the OpenMM Simulation to query.

	state_keys (list) – Default: [positions, velocities, potential_energy, kinetic_energy]
A list that defines what information to get from the context State.

	Returns

	stateinfo (dict) – Current positions, velocities, energies and box vectors of the context.

	
classmethod getIntegratorInfo(ncmc_integrator, integrator_keys=['lambda', 'shadow_work', 'protocol_work', 'Eold', 'Enew'])

	Returns a dict of alchemical/ncmc-swtiching data from querying the the NCMC
integrator.

	Parameters

	
	ncmc_integrator (openmm.Context.Integrator) – The integrator from the NCMC Context

	integrator_keys (list) – list containing strings of the values to get from the integrator.
Default = [‘lambda’, ‘shadow_work’, ‘protocol_work’, ‘Eold’, ‘Enew’,’Epert’]

	Returns

	integrator_info (dict) – Work values and energies from the NCMC integrator.

	
classmethod setContextFromState(context, state, box=True, positions=True, velocities=True)

	Update a given Context from the given State.

	Parameters

	
	context (openmm.Context) – The Context to be updated from the given State.

	state (openmm.State) – The current state (box_vectors, positions, velocities) of the
Simulation to update the given context.

	Returns

	context (openmm.Context) – The updated Context whose box_vectors, positions, and velocities
have been updated.

	
_printSimulationTiming()

	Prints the simulation timing and related information.

	
_setStateTable(simkey, stateidx, stateinfo)

	Updates stateTable (dict) containing: Positions, Velocities, Potential/Kinetic energies
of the state before and after a NCMC step or iteration.

	Parameters

	
	simkey (str (key: ‘md’, ‘ncmc’, ‘alch’)) – Key corresponding to the simulation.

	stateidx (str (key: ‘state0’ or ‘state1’)) – Key corresponding to the state information being stored.

	stateinfo (dict) – Dictionary containing the State information.

	
_syncStatesMDtoNCMC()

	Retrieves data on the current State of the MD context to
replace the box vectors, positions, and velocties in the NCMC context.

	
_stepNCMC(nstepsNC, moveStep, move_engine=None)

	Advance the NCMC simulation.

	Parameters

	
	nstepsNC (int) – The number of NCMC switching steps to advance by.

	moveStep (int) – The step number to perform the chosen move, which should be half
the number of nstepsNC.

	move_engine (blues.moves.MoveEngine) – The object that executes the chosen move.

	
_computeAlchemicalCorrection()

	Computes the alchemical correction term from switching between the NCMC
and MD potentials.

	
_acceptRejectMove(write_move=False)

	Choose to accept or reject the proposed move based
on the acceptance criterion.

	Parameters

	write_move (bool, default=False) – If True, writes the proposed NCMC move to a PDB file.

	
_resetSimulations(temperature=None)

	At the end of each iteration:

	Reset the step number in the NCMC context/integrator

	Set the velocities to random values chosen from a Boltzmann distribution at a given temperature.

	Parameters

	temperature (float) – The target temperature for the simulation.

	
_stepMD(nstepsMD)

	Advance the MD simulation.

	Parameters

	nstepsMD (int) – The number of steps to advance the MD simulation.

	
run(nIter=0, nstepsNC=0, moveStep=0, nstepsMD=0, temperature=300, write_move=False, **config)

	Executes the BLUES engine to iterate over the actions:
Perform NCMC simulation, perform proposed move, accepts/rejects move,
then performs the MD simulation from the NCMC state, niter number of times.
Note: If the parameters are not given explicitly, will look for the parameters
in the provided configuration on the SimulationFactory object.

	Parameters

	
	nIter (int, default = None) – Number of iterations of NCMC+MD to perform.

	nstepsNC (int) – The number of NCMC switching steps to advance by.

	moveStep (int) – The step number to perform the chosen move, which should be half
the number of nstepsNC.

	nstepsMD (int) – The number of steps to advance the MD simulation.

	temperature (float) – The target temperature for the simulation.

	write_move (bool, default=False) – If True, writes the proposed NCMC move to a PDB file.

Integrators

	
class blues.integrators.AlchemicalExternalLangevinIntegrator(alchemical_functions, splitting='R V O H O V R', temperature=Quantity(value=298.0, unit=kelvin), collision_rate=Quantity(value=1.0, unit=/picosecond), timestep=Quantity(value=1.0, unit=femtosecond), constraint_tolerance=1e-08, measure_shadow_work=False, measure_heat=True, nsteps_neq=100, nprop=1, prop_lambda=0.3, *args, **kwargs)

	Allows nonequilibrium switching based on force parameters specified in alchemical_functions.
A variable named lambda is switched from 0 to 1 linearly throughout the nsteps of the protocol.
The functions can use this to create more complex protocols for other global parameters.

As opposed to openmmtools.integrators.AlchemicalNonequilibriumLangevinIntegrator,
which this inherits from, the AlchemicalExternalLangevinIntegrator integrator also takes
into account work done outside the nonequilibrium switching portion(between integration steps).
For example if a molecule is rotated between integration steps, this integrator would
correctly account for the work caused by that rotation.

Propagator is based on Langevin splitting, as described below.
One way to divide the Langevin system is into three parts which can each be solved “exactly:”

	
	R: Linear “drift” / Constrained “drift”
	Deterministic update of positions, using current velocities
x <- x + v dt

	
	V: Linear “kick” / Constrained “kick”
	Deterministic update of velocities, using current forces
v <- v + (f/m) dt; where f = force, m = mass

	
	O: Ornstein-Uhlenbeck
	Stochastic update of velocities, simulating interaction with a heat bath
v <- av + b sqrt(kT/m) R where:

	a = e^(-gamma dt)

	b = sqrt(1 - e^(-2gamma dt))

	R is i.i.d. standard normal

We can then construct integrators by solving each part for a certain timestep in sequence.
(We can further split up the V step by force group, evaluating cheap but fast-fluctuating
forces more frequently than expensive but slow-fluctuating forces. Since forces are only
evaluated in the V step, we represent this by including in our “alphabet” V0, V1, …)
When the system contains holonomic constraints, these steps are confined to the constraint
manifold.

	Parameters

	
	alchemical_functions (dict of strings) – key: value pairs such as “global_parameter” : function_of_lambda where function_of_lambda is a Lepton-compatible string that depends on the variable “lambda”

	splitting (string, default: “H V R O V R H”) – Sequence of R, V, O (and optionally V{i}), and { }substeps to be executed each timestep. There is also an H option, which increments the global parameter lambda by 1/nsteps_neq for each step.
Forces are only used in V-step. Handle multiple force groups by appending the force group index
to V-steps, e.g. “V0” will only use forces from force group 0. “V” will perform a step using all forces.(will cause metropolization, and must be followed later by a).

	temperature (numpy.unit.Quantity compatible with kelvin, default: 298.0*simtk.unit.kelvin) – Fictitious “bath” temperature

	collision_rate (numpy.unit.Quantity compatible with 1/picoseconds, default: 91.0/simtk.unit.picoseconds) – Collision rate

	timestep (numpy.unit.Quantity compatible with femtoseconds, default: 1.0*simtk.unit.femtoseconds) – Integration timestep

	constraint_tolerance (float, default: 1.0e-8) – Tolerance for constraint solver

	measure_shadow_work (boolean, default: False) – Accumulate the shadow work performed by the symplectic substeps, in the global shadow_work

	measure_heat (boolean, default: True) – Accumulate the heat exchanged with the bath in each step, in the global heat

	nsteps_neq (int, default: 100) – Number of steps in nonequilibrium protocol. Default 100

	prop_lambda (float (Default = 0.3)) – Defines the region in which to add extra propagation
steps during the NCMC simulation from the midpoint 0.5.
i.e. A value of 0.3 will add extra steps from lambda 0.2 to 0.8.

	nprop (int (Default: 1)) – Controls the number of propagation steps to add in the lambda
region defined by prop_lambda.

	
_kinetic_energy

	This is 0.5*m*v*v by default, and is the expression used for the kinetic energy

	Type

	str

Examples

	
	g-BAOAB:
	splitting=”R V O H O V R”

	
	VVVR
	splitting=”O V R H R V O”

	
	VV
	splitting=”V R H R V”

	
	An NCMC algorithm with Metropolized integrator:
	splitting=”O { V R H R V } O”

References

[Nilmeier, et al. 2011] Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation

[Leimkuhler and Matthews, 2015] Molecular dynamics: with deterministic and stochastic numerical methods, Chapter 7

	
reset()

	Reset all statistics, alchemical parameters, and work.

Utilities

Provides a host of utility functions for the BLUES engine.

Authors: Samuel C. Gill
Contributors: Nathan M. Lim, David L. Mobley

	
blues.utils.saveSimulationFrame(simulation, outfname)

	Extracts a ParmEd structure and writes the frame given
an OpenMM Simulation object.

	Parameters

	
	simulation (openmm.Simulation) – The OpenMM Simulation to write a frame from.

	outfname (str) – The output file name to save the simulation frame from. Supported
extensions:

	PDB (.pdb, pdb)

	PDBx/mmCIF (.cif, cif)

	PQR (.pqr, pqr)

	Amber topology file (.prmtop/.parm7, amber)

	CHARMM PSF file (.psf, psf)

	CHARMM coordinate file (.crd, charmmcrd)

	Gromacs topology file (.top, gromacs)

	Gromacs GRO file (.gro, gro)

	Mol2 file (.mol2, mol2)

	Mol3 file (.mol3, mol3)

	Amber ASCII restart (.rst7/.inpcrd/.restrt, rst7)

	Amber NetCDF restart (.ncrst, ncrst)

	
blues.utils.print_host_info(simulation)

	Prints hardware related information for the openmm.Simulation

	Parameters

	simulation (openmm.Simulation) – The OpenMM Simulation to write a frame from.

	
blues.utils.calculateNCMCSteps(nstepsNC=0, nprop=1, propLambda=0.3, **kwargs)

	Calculates the number of NCMC switching steps.

	Parameters

	
	nstepsNC (int) – The number of NCMC switching steps

	nprop (int, default=1) – The number of propagation steps per NCMC switching steps

	propLambda (float, default=0.3) – The lambda values in which additional propagation steps will be added
or 0.5 +/- propLambda. If 0.3, this will add propgation steps at lambda
values 0.2 to 0.8.

	
blues.utils.check_amber_selection(structure, selection)

	Given a AmberMask selection (str) for selecting atoms to freeze or restrain,
check if it will actually select atoms. If the selection produces None,
suggest valid residues or atoms.

	Parameters

	
	structure (parmed.Structure) – The structure of the simulated system

	selection (str) – The selection string uses Amber selection syntax to select atoms to be
restrained/frozen during simulation.

	logger (logging.Logger) – Records information or streams to terminal.

	
blues.utils.parse_unit_quantity(unit_quantity_str)

	Utility for parsing parameters from the YAML file that require units.

	Parameters

	unit_quantity_str (str) – A string specifying a quantity and it’s units. i.e. ‘3.024 * daltons’

	Returns

	unit_quantity (simtk.unit.Quantity) – i.e unit.Quantity(3.024, unit=dalton)

	
blues.utils.zero_masses(system, atomList=None)

	Zeroes the masses of specified atoms to constrain certain degrees of freedom.

	Parameters

	
	system (penmm.System) – system to zero masses

	atomList (list of ints) – atom indicies to zero masses

	Returns

	system (openmm.System) – The modified system with massless atoms.

	
blues.utils.atomIndexfromTop(resname, topology)

	Get atom indices of a ligand from OpenMM Topology.

	Parameters

	
	resname (str) – resname that you want to get the atom indicies for (ex. ‘LIG’)

	topology (str, optional, default=None) – path of topology file. Include if the topology is not included
in the coord_file

	Returns

	lig_atoms (list of ints) – list of atoms in the coordinate file matching lig_resname

	
blues.utils.get_data_filename(package_root, relative_path)

	Get the full path to one of the reference files in testsystems.
In the source distribution, these files are in blues/data/,
but on installation, they’re moved to somewhere in the user’s python
site-packages directory.
Adapted from:
https://github.com/open-forcefield-group/smarty/blob/master/smarty/utils.py

	Parameters

	
	package_root (str) – Name of the included/installed python package

	relative_path (str) – Path to the file within the python package

	Returns

	fn (str) – Full path to file

	
blues.utils.spreadLambdaProtocol(switching_values, steps, switching_types='auto', kind='cubic', return_tab_function=True)

	Takes a list of lambda values (either for sterics or electrostatics) and transforms that list
to be spread out over a given steps range to be easily compatible with the OpenMM Discrete1DFunction
tabulated function.

	Parameters

	
	switching_values (list) – A list of lambda values decreasing from 1 to 0.

	steps (int) – The number of steps wanted for the tabulated function.

	switching_types (str, optional, default=’auto’) – The type of lambda switching the switching_values corresponds to, either ‘auto’, ‘electrostatics’,
or ‘sterics’. If ‘electrostatics’ this assumes the inital value immediately decreases from 1.
If ‘sterics’ this assumes the inital values stay at 1 for some period.
If ‘auto’ this function tries to guess the switching_types based on this, based on typical
lambda protocols turning off the electrostatics completely, before turning off sterics.

	kind (str, optional, default=’cubic’) – The kind of interpolation that should be performed (using scipy.interpolate.interp1d) to
define the lines between the points of switching_values.

	Returns

	tab_steps (list or simtk.openmm.openmm.Discrete1DFunction) – List of length steps that corresponds to the tabulated-friendly version of the input switching_values.
If return-tab_function=True

Examples

>>> from simtk.openmm.openmm import Continuous1DFunction, Discrete1DFunction
>>> sterics = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.95, 0.8848447462380346,
 0.8428373352131427, 0.7928373352131427, 0.7490146003095886, 0.6934088361682191,
 0.6515123083157823, 0.6088924298371354, 0.5588924298371354, 0.5088924298371353,
 0.4649556683144045, 0.4298606804827029, 0.3798606804827029, 0.35019373288005945,
 0.31648339779024653, 0.2780498882483276, 0.2521302239477468, 0.23139484523965026,
 0.18729812232625365, 0.15427643961733822, 0.12153116162972155,
 0.09632462702545555, 0.06463743549588846, 0.01463743549588846,
 0.0]

>>> statics = [1.0, 0.8519493439593149, 0.7142750443470669,
 0.5385929179832776, 0.3891972949356391, 0.18820309596839535, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
>>> statics_tab = spreadLambdaProtocol(statics, opt['nstepsNC'], switching_types='auto')
>>> sterics_tab = spreadLambdaProtocol(sterics, opt['nstepsNC'], switching_types='sterics')

>>> # Assuming some Context already exists:
>>> context._integrator.addTabulatedFunction('sterics_tab', sterics_tab)
>>> context._integrator.addTabulatedFunction('electrostatics_tab', statics_tab)

Reporters

	
blues.reporters.addLoggingLevel(levelName, levelNum, methodName=None)

	Comprehensively adds a new logging level to the logging module and the
currently configured logging class.

levelName becomes an attribute of the logging module with the value
levelNum. methodName becomes a convenience method for both logging
itself and the class returned by logging.getLoggerClass() (usually just
logging.Logger). If methodName is not specified, levelName.lower() is
used.

To avoid accidental clobberings of existing attributes, this method will
raise an AttributeError if the level name is already an attribute of the
logging module or if the method name is already present

	Parameters

	
	levelName (str) – The new level name to be added to the logging module.

	levelNum (int) – The level number indicated for the logging module.

	methodName (str, default=None) – The method to call on the logging module for the new level name.
For example if provided ‘trace’, you would call logging.trace().

Example

>>> addLoggingLevel('TRACE', logging.DEBUG - 5)
>>> logging.getLogger(__name__).setLevel("TRACE")
>>> logging.getLogger(__name__).trace('that worked')
>>> logging.trace('so did this')
>>> logging.TRACE
5

	
blues.reporters.init_logger(logger, level=20, stream=True, outfname='blues-20201022-192211')

	Initialize the Logger module with the given logger_level and outfname.

	Parameters

	
	logger (logging.getLogger()) – The root logger object if it has been created already.

	level (logging.<LEVEL>) – Valid options for <LEVEL> would be DEBUG, INFO, WARNING, ERROR, CRITICAL.

	stream (bool, default = True) – If True, the logger will also stream information to sys.stdout as well
as the output file.

	outfname (str, default = time.strftime(“blues-%Y%m%d-%H%M%S”)) – The output file path prefix to store the logged data. This will always
write to a file with the extension .log.

	Returns

	logger (logging.getLogger()) – The logging object with additional Handlers added.

	
class blues.reporters.ReporterConfig(outfname, reporter_config, logger=None)

	Generates a set of custom/recommended reporters for
BLUES simulations from YAML configuration. It can also be called
externally without a YAML configuration file.

	Parameters

	
	outfname (str,) – Output filename prefix for files generated by the reporters.

	reporter_config (dict) – Dict of parameters for the md_reporters or ncmc_reporters.
Valid keys for reporters are: state, traj_netcdf, restart,
progress, and stream. All reporters except stream
are extensions of the parmed.openmm.reporters. More below:
- state : State data reporter for OpenMM simulations, but it is a little more generalized. Writes to a .ene file. For full list of parameters see parmed.openmm.reporters.StateDataReporter.
- traj_netcdf : Customized AMBER NetCDF (.nc) format reporter
- restart : Restart AMBER NetCDF (.rst7) format reporter
- progress : Write to a file (.prog), the progress report of how many steps has been done, how fast the simulation is running, and how much time is left (similar to the mdinfo file in Amber). File is overwritten at each reportInterval. For full list of parameters see parmed.openmm.reporters.ProgressReporter
- stream : Customized version of openmm.app.StateDataReporter.This
will instead stream/print the information to the terminal as opposed to
writing to a file. Takes the same parameters as the openmm.app.StateDataReporter

	logger (logging.Logger object) – Provide the root logger for printing information.

Examples

This class is intended to be called internally from blues.config.set_Reporters.
Below is an example to call this externally.

>>> from blues.reporters import ReporterConfig
>>> import logging
>>> logger = logging.getLogger(__name__)
>>> md_reporters = { "restart": { "reportInterval": 1000 },
 "state" : { "reportInterval": 250 },
 "stream": { "progress": true,
 "remainingTime": true,
 "reportInterval": 250,
 "speed": true,
 "step": true,
 "title": "md",
 "totalSteps": 10000},
 "traj_netcdf": { "reportInterval": 250 }
 }
>>> md_reporter_cfg = ReporterConfig(outfname='blues-test', md_reporters, logger)
>>> md_reporters_list = md_reporter_cfg.makeReporters()

	
makeReporters()

	Returns a list of openmm Reporters based on the configuration at
initialization of the class.

	
class blues.reporters.BLUESHDF5Reporter(file, reportInterval=1, title='NCMC Trajectory', coordinates=True, frame_indices=[], time=False, cell=True, temperature=False, potentialEnergy=False, kineticEnergy=False, velocities=False, atomSubset=None, protocolWork=True, alchemicalLambda=True, parameters=None, environment=True)

	This is a subclass of the HDF5 class from mdtraj that handles
reporting of the trajectory.

HDF5Reporter stores a molecular dynamics trajectory in the HDF5 format.
This object supports saving all kinds of information from the simulation –
more than any other trajectory format. In addition to all of the options,
the topology of the system will also (of course) be stored in the file. All
of the information is compressed, so the size of the file is not much
different than DCD, despite the added flexibility.

	Parameters

	
	file (str, or HDF5TrajectoryFile) – Either an open HDF5TrajecoryFile object to write to, or a string
specifying the filename of a new HDF5 file to save the trajectory to.

	title (str,) – String to specify the title of the HDF5 tables

	frame_indices (list, frame numbers for writing the trajectory)

	reportInterval (int) – The interval (in time steps) at which to write frames.

	coordinates (bool) – Whether to write the coordinates to the file.

	time (bool) – Whether to write the current time to the file.

	cell (bool) – Whether to write the current unit cell dimensions to the file.

	potentialEnergy (bool) – Whether to write the potential energy to the file.

	kineticEnergy (bool) – Whether to write the kinetic energy to the file.

	temperature (bool) – Whether to write the instantaneous temperature to the file.

	velocities (bool) – Whether to write the velocities to the file.

	atomSubset (array_like, default=None) – Only write a subset of the atoms, with these (zero based) indices
to the file. If None, all of the atoms will be written to disk.

	protocolWork (bool=False,) – Write the protocolWork for the alchemical process in the NCMC simulation

	alchemicalLambda (bool=False,) – Write the alchemicalLambda step for the alchemical process in the NCMC simulation.

	parameters (dict) – Dict of the simulation parameters. Useful for record keeping.

	environment (bool) – True will attempt to export your conda environment to JSON and
store the information in the HDF5 file. Useful for record keeping.

Notes

If you use the atomSubset option to write only a subset of the atoms
to disk, the kineticEnergy, potentialEnergy, and temperature
fields will not change. They will still refer to the energy and temperature
of the whole system, and are not “subsetted” to only include the energy
of your subsystem.

	
describeNextReport(simulation)

	Get information about the next report this object will generate.

	Parameters

	simulation (app.Simulation) – The simulation to generate a report for

	Returns

	nsteps, pos, vel, frc, ene (int, bool, bool, bool, bool) – nsteps is the number of steps until the next report
pos, vel, frc, and ene are flags indicating whether positions,
velocities, forces, and/or energies are needed from the Context

	
report(simulation, state)

	Generate a report.

	Parameters

	
	simulation (simtk.openmm.app.Simulation) – The Simulation to generate a report for

	state (simtk.openmm.State) – The current state of the simulation

	
class blues.reporters.BLUESStateDataReporter(file, reportInterval=1, frame_indices=[], title='', step=False, time=False, potentialEnergy=False, kineticEnergy=False, totalEnergy=False, temperature=False, volume=False, density=False, progress=False, remainingTime=False, speed=False, elapsedTime=False, separator='\t', systemMass=None, totalSteps=None, protocolWork=False, alchemicalLambda=False, currentIter=False)

	StateDataReporter outputs information about a simulation, such as energy and temperature, to a file. To use it, create a StateDataReporter, then add it to the Simulation’s list of reporters. The set of data to write is configurable using boolean flags passed to the constructor. By default the data is written in comma-separated-value (CSV) format, but you can specify a different separator to use. Inherited from openmm.app.StateDataReporter

	Parameters

	
	file (string or file) – The file to write to, specified as a file name or file-like object (Logger)

	reportInterval (int) – The interval (in time steps) at which to write frames

	frame_indices (list, frame numbers for writing the trajectory)

	title (str,) – Text prefix for each line of the report. Used to distinguish
between the NCMC and MD simulation reports.

	step (bool=False) – Whether to write the current step index to the file

	time (bool=False) – Whether to write the current time to the file

	potentialEnergy (bool=False) – Whether to write the potential energy to the file

	kineticEnergy (bool=False) – Whether to write the kinetic energy to the file

	totalEnergy (bool=False) – Whether to write the total energy to the file

	temperature (bool=False) – Whether to write the instantaneous temperature to the file

	volume (bool=False) – Whether to write the periodic box volume to the file

	density (bool=False) – Whether to write the system density to the file

	progress (bool=False) – Whether to write current progress (percent completion) to the file.
If this is True, you must also specify totalSteps.

	remainingTime (bool=False) – Whether to write an estimate of the remaining clock time until
completion to the file. If this is True, you must also specify
totalSteps.

	speed (bool=False) – Whether to write an estimate of the simulation speed in ns/day to
the file

	elapsedTime (bool=False) – Whether to write the elapsed time of the simulation in seconds to
the file.

	separator (string=’,’) – The separator to use between columns in the file

	systemMass (mass=None) – The total mass to use for the system when reporting density. If
this is None (the default), the system mass is computed by summing
the masses of all particles. This parameter is useful when the
particle masses do not reflect their actual physical mass, such as
when some particles have had their masses set to 0 to immobilize
them.

	totalSteps (int=None) – The total number of steps that will be included in the simulation.
This is required if either progress or remainingTime is set to True,
and defines how many steps will indicate 100% completion.

	protocolWork (bool=False,) – Write the protocolWork for the alchemical process in the NCMC simulation

	alchemicalLambda (bool=False,) – Write the alchemicalLambda step for the alchemical process in the NCMC simulation.

	
describeNextReport(simulation)

	Get information about the next report this object will generate.

	Parameters

	simulation (app.Simulation) – The simulation to generate a report for

	Returns

	nsteps, pos, vel, frc, ene (int, bool, bool, bool, bool) – nsteps is the number of steps until the next report
pos, vel, frc, and ene are flags indicating whether positions,
velocities, forces, and/or energies are needed from the Context

	
report(simulation, state)

	Generate a report.

	Parameters

	
	simulation (Simulation) – The Simulation to generate a report for

	state (State) – The current state of the simulation

	
class blues.reporters.NetCDF4Reporter(file, reportInterval=1, frame_indices=[], crds=True, vels=False, frcs=False, protocolWork=False, alchemicalLambda=False)

	Class to read or write NetCDF trajectory files
Inherited from parmed.openmm.reporters.NetCDFReporter

	Parameters

	
	file (str) – Name of the file to write the trajectory to

	reportInterval (int) – How frequently to write a frame to the trajectory

	frame_indices (list, frame numbers for writing the trajectory) – If this reporter is used for the NCMC simulation,
0.5 will report at the moveStep and -1 will record at the last frame.

	crds (bool=True) – Should we write coordinates to this trajectory? (Default True)

	vels (bool=False) – Should we write velocities to this trajectory? (Default False)

	frcs (bool=False) – Should we write forces to this trajectory? (Default False)

	protocolWork (bool=False,) – Write the protocolWork for the alchemical process in the NCMC simulation

	alchemicalLambda (bool=False,) – Write the alchemicalLambda step for the alchemical process in the NCMC simulation.

	
describeNextReport(simulation)

	Get information about the next report this object will generate.

	Parameters

	simulation (app.Simulation) – The simulation to generate a report for

	Returns

	nsteps, pos, vel, frc, ene (int, bool, bool, bool, bool) – nsteps is the number of steps until the next report
pos, vel, frc, and ene are flags indicating whether positions,
velocities, forces, and/or energies are needed from the Context

	
report(simulation, state)

	Generate a report.

	Parameters

	
	simulation (app.Simulation) – The Simulation to generate a report for

	state (mm.State) – The current state of the simulation

Formats

	
class blues.formats.LoggerFormatter

	Formats the output of the logger.Logger object. Allows customization
for customized logging levels. This will add a custom level ‘REPORT’
to all custom BLUES reporters from the blues.reporters module.

Examples

Below we add a custom level ‘REPORT’ and have the logger module stream the
message to sys.stdout without any additional information to our custom
reporters from the blues.reporters module

>>> from blues import reporters
>>> from blues.formats import LoggerFormatter
>>> import logging, sys
>>> logger = logging.getLogger(__name__)
>>> reporters.addLoggingLevel('REPORT', logging.WARNING - 5)
>>> fmt = LoggerFormatter(fmt="%(message)s")
>>> stdout_handler = logging.StreamHandler(stream=sys.stdout)
>>> stdout_handler.setFormatter(fmt)
>>> logger.addHandler(stdout_handler)
>>> logger.report('This is a REPORT call')
 This is a REPORT call
>>> logger.info('This is an INFO call')
 INFO: This is an INFO call

	
format(record)

	Format the specified record as text.

The record’s attribute dictionary is used as the operand to a
string formatting operation which yields the returned string.
Before formatting the dictionary, a couple of preparatory steps
are carried out. The message attribute of the record is computed
using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is
called to format the event time. If there is exception information,
it is formatted using formatException() and appended to the message.

	
class blues.formats.BLUESHDF5TrajectoryFile(filename, mode='r', force_overwrite=True, compression='zlib')

	Extension of the mdtraj.formats.hdf5.HDF5TrajectoryFile class which
handles the writing of the trajectory data to the HDF5 file format.
Additional features include writing NCMC related data to the HDF5 file.

	Parameters

	
	filename (str) – The filename for the HDF5 file.

	mode (str, default=’r’) – The mode to open the HDF5 file in.

	force_overwrite (bool, default=True) – If True, overwrite the file if it already exists

	compression (str, default=’zlib’) – Valid choices are [‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’]

	
write(coordinates, parameters=None, environment=None, time=None, cell_lengths=None, cell_angles=None, velocities=None, kineticEnergy=None, potentialEnergy=None, temperature=None, alchemicalLambda=None, protocolWork=None, title=None)

	Write one or more frames of data to the file
This method saves data that is associated with one or more simulation
frames. Note that all of the arguments can either be raw numpy arrays
or unitted arrays (with simtk.unit.Quantity). If the arrays are unittted,
a unit conversion will be automatically done from the supplied units
into the proper units for saving on disk. You won’t have to worry about
it.

Furthermore, if you wish to save a single frame of simulation data, you
can do so naturally, for instance by supplying a 2d array for the
coordinates and a single float for the time. This “shape deficiency”
will be recognized, and handled appropriately.

	Parameters

	
	coordinates (np.ndarray, shape=(n_frames, n_atoms, 3)) – The cartesian coordinates of the atoms to write. By convention, the
lengths should be in units of nanometers.

	time (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the simulation time, in picoseconds
corresponding to each frame.

	cell_lengths (np.ndarray, shape=(n_frames, 3), dtype=float32, optional) – You may optionally specify the unitcell lengths.
The length of the periodic box in each frame, in each direction,
a, b, c. By convention the lengths should be in units
of angstroms.

	cell_angles (np.ndarray, shape=(n_frames, 3), dtype=float32, optional) – You may optionally specify the unitcell angles in each frame.
Organized analogously to cell_lengths. Gives the alpha, beta and
gamma angles respectively. By convention, the angles should be
in units of degrees.

	velocities (np.ndarray, shape=(n_frames, n_atoms, 3), optional) – You may optionally specify the cartesian components of the velocity
for each atom in each frame. By convention, the velocities
should be in units of nanometers / picosecond.

	kineticEnergy (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the kinetic energy in each frame. By
convention the kinetic energies should b in units of kilojoules per
mole.

	potentialEnergy (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the potential energy in each frame. By
convention the kinetic energies should b in units of kilojoules per
mole.

	temperature (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the temperature in each frame. By
convention the temperatures should b in units of Kelvin.

	alchemicalLambda (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the alchemicalLambda in each frame. These
have no units, but are generally between zero and one.

	protocolWork (np.ndarray, shape=(n_frames,), optional) – You may optionally specify the protocolWork in each frame. These
are in reduced units of kT but are stored dimensionless

	title (str) – Title of the HDF5 trajectory file

	
class blues.formats.NetCDF4Traj(fname, mode='r')

	Extension of parmed.amber.netcdffiles.NetCDFTraj to allow proper file
flushing. Requires the netcdf4 library (not scipy), install with
conda install -c conda-forge netcdf4 .

	Parameters

	
	fname (str) – File name for the trajectory file

	mode (str, default=’r’) – The mode to open the file in.

	
flush()

	Flush buffered data to disc.

	
classmethod open_new(fname, natom, box, crds=True, vels=False, frcs=False, remd=None, remd_dimension=None, title='', protocolWork=False, alchemicalLambda=False)

	Opens a new NetCDF file and sets the attributes

	Parameters

	
	fname (str) – Name of the new file to open (overwritten)

	natom (int) – Number of atoms in the restart

	box (bool) – Indicates if cell lengths and angles are written to the NetCDF file

	crds (bool, default=True) – Indicates if coordinates are written to the NetCDF file

	vels (bool, default=False) – Indicates if velocities are written to the NetCDF file

	frcs (bool, default=False) – Indicates if forces are written to the NetCDF file

	remd (str, default=None) – ‘T[emperature]’ if replica temperature is written
‘M[ulti]’ if Multi-D REMD information is written
None if no REMD information is written

	remd_dimension (int, default=None) – If remd above is ‘M[ulti]’, this is how many REMD dimensions exist

	title (str, default=’’) – The title of the NetCDF trajectory file

	protocolWork (bool, default=False) – Indicates if protocolWork from the NCMC simulation should be written
to the NetCDF file

	alchemicalLambda (bool, default=False) – Indicates if alchemicalLambda from the NCMC simulation should be written
to the NetCDF file

	
property protocolWork

	Store the accumulated protocolWork from the NCMC simulation as property.

	
add_protocolWork(stuff)

	Adds the time to the current frame of the NetCDF file

	Parameters

	stuff (float or time-dimension Quantity) – The time to add to the current frame

	
property alchemicalLambda

	Store the current alchemicalLambda (0->1.0) from the NCMC simulation as property.

	
add_alchemicalLambda(stuff)

	Adds the time to the current frame of the NetCDF file

	Parameters

	stuff (float or time-dimension Quantity) – The time to add to the current frame

 Tutorial

Tutorial

This page provides examples on how to use BLUES.
A Jupyter notebook is available in the
examples folder [https://github.com/MobleyLab/blues/tree/master/examples]
on github so you can try them out yourself or you can view it on nbviewer [https://nbviewer.jupyter.org/github/mobleylab/blues/blob/master/notebooks/BLUES_tutorial.ipynb]

	Introduction to BLUES

	Background
	Coupling MD simulations with random NCMC moves for enhanced sampling of ligand binding modes via BLUES

	YAML Configuration
	Input/Output

	System configuration

	Simulation Configuration

	Reporter Configuration

	Running a BLUES simulation
	Selecting a move and initialize the move engine

	Generating the Systems for openMM: ``SystemFactory``

	Generating the OpenMM Simulations: ``SimulationFactory``

	Run the BLUES Simulation

Let us know if you have any problems or suggestions through our issue tracker: Issue

 Introduction to BLUES

“nbsphinx-toctree”: { “maxdepth”: 2 }

Introduction to BLUES

In this Jupyter Notebook, we will cover the following topics:

	YAML configuration

	Setting up a system for BLUES

	Advanced options (HMR, restraints, freezing)

	Configuring reporters

	Running a BLUES simulation

Background

Coupling MD simulations with random NCMC moves for enhanced sampling of ligand binding modes via BLUES

BLUES [https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b11820] is an approach that combines molecular dynamics (MD [http://www.ch.embnet.org/MD_tutorial/pages/MD.Part1.html]) simulations and the Non-equilibrium Candidate Monte Carlo (NCMC [http://www.pnas.org/content/108/45/E1009]) framework to enhance ligand binding mode sampling (Github) [https://github.com/MobleyLab/blues]

During a MD simulation, BLUES will perform a random rotation of the bound ligand and then allow the system to relax through alchemically [http://www.alchemistry.org/wiki/Free_Energy_Fundamentals#Why_the_name_.22Alchemical.22.3F] scaling off/on the ligand-receptor interactions. BLUES enables us to sample alternative ligand binding modes, that would normally take very long simulations to capture in a traditional MD simulation because of the large gap in
timescales [https://www.ncbi.nlm.nih.gov/pubmed/20934381] between atomistic motions and biological motions.

YAML Configuration

BLUES can be configured in either pure python through dictionaries of the appropriate parameters or using a YAML file (which is converted to a dict under the hood). Below we will walk through the keywords for configuring BLUES. An example YAML configuration file can be found in rotmove_cuda.yaml.

Note: Code blocks in this notebook denoted with —— indicate a section from a YAML configuration file.

Input/Output

output_dir: .
outfname: t4-toluene
logger_level: info #critical, error, warning, info, debug

Output files

Specify the directory you want all the simulation output files to be saved to with ``output_dir``. By default, BLUES will save them in the current directory that you’re running BLUES in. The parameter ``outfname`` will be used for the filename prefix for all output files (e.g. t4-toluene.nc, t4-toleune.log). The level of verbosity can be controlled by ``logger_level``. The default ``logger_level`` is set to info and valid choices are critical, error,
warning, info or debug.

Input files to generate the structure of your system

	Input a Parameter/topology file and a Coordinate file, which will be used to generate the ParmEd Structure.

	The ParmEd Structure is a chemical structure composed of atoms, bonds, angles, torsions, and other topological features.

To see a full list of supported file formats: https://parmed.github.io/ParmEd/html/readwrite.html

structure:
 filename: tests/data/eqToluene.prmtop
 xyz: tests/data/eqToluene.inpcrd
 restart: t4-toluene_2.rst7

BLUES simulations all begin from a parmed.Structure. Keywords nested under ``structure`` are for generating the parmed.Structure by calling parmed.load_file() [https://parmed.github.io/ParmEd/html/readwrite.html#reading-files-with-load-file] under the hood. The ``filename`` keyword should point to the file containing the parameters for your system. For example, if coming from AMBER you would specify the .prmtop file. The ``xyz`` keyword is intended for specifying the
coordinates of your system (e.g. .inpcrd or .pdb).

Restart files

BLUES supports “soft” restarts of simulations from AMBER restart files ``.rst7`` via parmed.amber.Rst7 [https://parmed.github.io/ParmEd/html/amberobj/parmed.amber.Rst7.html?highlight=rst7#parmed-amber-rst7]. “Soft” restart implies the simulation will begin from the saved positions, velocities, and box vectors but does not store any internal data such as the states of random number generators. It should be noted that velocities are re-initialized at every BLUES iteration, so storing these
is not so important.

System configuration

From the YAML file, there is a section dedicated for generating an openmm.System from a parmed.Structure. For definitions of ``system`` keywords and valid options see parmed.Structure.createSystem() [https://parmed.github.io/ParmEd/html/structobj/parmed.structure.Structure.html#parmed.structure.Structure.createSystem]

Below we provide an example for generating a system in a cubic box with explicit solvent.

system:
 nonbondedMethod: PME
 nonbondedCutoff: 10 * angstroms
 constraints: HBonds
 rigidWater: True
 removeCMMotion: True
 ewaldErrorTolerance: 0.005
 flexibleConstraints: True
 splitDihedrals: False

(Optional) Hydrogen mass repartitioning

BLUES has the option to use the hydrogen mass repartitioning scheme HMR [https://pubs.acs.org/doi/abs/10.1021/ct5010406] to allow use of longer time steps in the simulation. Simply provide the keyword ``hydrogenMass`` in the YAML file like below:

system:
 nonbondedMethod: PME
 nonbondedCutoff: 10 * angstroms
 constraints: HBonds
 rigidWater: True
 removeCMMotion: True
 ewaldErrorTolerance: 0.005
 flexibleConstraints: True
 splitDihedrals: False
 hydrogenMass: 3.024 * daltons

If using HMR, you can set the timestep (``dt``) for the simulation to 4fs and ``constraints`` should be set to either ``HBonds`` or ``AllBonds``.

(Optional) Alchemical system configuration

Nested under the system parameters, you can modify parameters for the alchemical system. Below are the default settings and are not required to be specified in the YAML configuration. Modifications to these parameters are for advanced users.

system:
 nonbondedMethod: PME
 nonbondedCutoff: 10 * angstroms
 constraints: HBonds
 rigidWater: True
 removeCMMotion: True
 ewaldErrorTolerance: 0.005
 flexibleConstraints: True
 splitDihedrals: False
 alchemical:
 # Sterics
 softcore_alpha: 0.5
 softcore_a : 1
 softcore_b : 1
 softcore_c : 6

 # Electrostatics
 softcore_beta : 0.0
 softcore_d : 1
 softcore_e : 1
 softcore_f : 2

 annihilate_electrostatics : True
 annihilate_sterics : False

For further details on alchemical parameters see: http://getyank.org/0.16.2/yamlpages/options.html

Simulation Configuration

The keywords for configuring the Simulations for BLUES are explained below:

	``dt``: timestep

	``nIter``: number of iterations or proposed moves

	``nstepsMD``: number of MD steps

	``nstepsNC``: number NCMC steps

The configuration below will run BLUES in NVT with 2fs timesteps for 10 iterations. The MD and NCMC simulation will run 10,000 steps per iteration.

simulation:
 platform: CUDA
 dt: 0.002 * picoseconds
 friction: 1 * 1/picoseconds
 temperature: 300 * kelvin
 nIter: 10
 nstepsMD: 10000
 nstepsNC: 10000

NPT Simulation

To run BLUES in NPT, simply specify a ``pressure``:

simulation:
 platform: CUDA
 dt: 0.002 * picoseconds
 friction: 1 * 1/picoseconds
 temperature: 300 * kelvin
 nIter: 10
 nstepsMD: 10000
 nstepsNC: 10000
 pressure: 1 * atmospheres

(Optional) Additional relaxation steps in the NCMC simulation

Keywords ``nprop`` and ``propLambda`` allow you to add additional relxation steps between a set range in the lambda schedule for the alchemical process in the NCMC simulation. Setting ``propLambda`` to 0.3 will select a lambda range of -/+ 0.3 from the midpoint (0.5), giving [0.2, 0.8]. During the alchemical process, when lambda is between 0.2 to 0.8, ``nprop`` controls the number of additional relaxation steps to add at each lambda step (change in lambda). Additional relaxation
steps has been show to increase acceptance proposed NCMC moves.

simulation:
 platform: CUDA
 dt: 0.002 * picoseconds
 friction: 1 * 1/picoseconds
 temperature: 300 * kelvin
 nIter: 10
 nstepsMD: 10000
 nstepsNC: 10000
 pressure: 1 * atmospheres
 nprop: 3
 propLambda: 0.3

(Optional) Platform Properties

If you need to modify platform properties for the simulation, you can set the keyword ``properties`` like below:

Example: OpenCL in single precision on GPU device 2

Note: works for running on the GPU on MacBook Pro 2017

simulation:
 platform: OpenCL
 properties:
 OpenCLPrecision: single
 OpenCLDeviceIndex: 2
 dt: 0.002 * picoseconds
 friction: 1 * 1/picoseconds
 temperature: 300 * kelvin
 nIter: 10
 nstepsMD: 10000
 nstepsNC: 10000
 pressure: 1 * atmospheres

Example: CUDA in double precision on GPU device 0

simulation:
 platform: CUDA
 properties:
 CudaPrecision: double
 CudaDeviceIndex: 0
 dt: 0.002 * picoseconds
 friction: 1 * 1/picoseconds
 temperature: 300 * kelvin
 nIter: 10
 nstepsMD: 10000
 nstepsNC: 10000
 pressure: 1 * atmospheres

Reporter Configuration

We provide functionality to configure a recommended set of reporters from the YAML file. These are used to record information for either the MD or NCMC simulation. Below are the keywords for each reporter. Each reporter will require the ``reportInterval`` keyword to specify the frequency to store the simulation data: - ``state`` : State data reporter for OpenMM simulations, but it is a little more generalized. Writes to a .ene file. - For full list of parameters see
parmed.openmm.reporters.StateDataReporter [https://parmed.github.io/ParmEd/html/api/parmed/parmed.openmm.reporters.html#parmed.openmm.reporters.StateDataReporter] - ``traj_netcdf`` : Customized AMBER NetCDF (.nc) format reporter - ``restart`` : Restart AMBER NetCDF (.rst7) format reporter - ``progress`` : Write to a file (.prog), the progress report of how many steps has been done, how fast the simulation is running, and how much time is left (similar to the mdinfo
file in Amber). File is overwritten at each reportInterval. - For full list of parameters see parmed.openmm.reporters.ProgressReporter [https://parmed.github.io/ParmEd/html/api/parmed/parmed.openmm.reporters.html#parmed.openmm.reporters.ProgressReporter] - ``stream`` : Customized version of openmm.app.StateDataReporter. This will instead stream/print the information to the terminal as opposed to writing to a file. - takes the same parameters as the
openmm.app.StateDataReporter [http://docs.openmm.org/development/api-python/generated/simtk.openmm.app.statedatareporter.StateDataReporter.html#simtk.openmm.app.statedatareporter.StateDataReporter]

To attach them to the MD simulation. You nest the reporter keywords under the keyword ``md_reporters`` like below. To attach the reporters to NCMC simulation, use the ``ncmc_reporters`` keyword instead.

md_reporters:
 state:
 reportInterval: 250
 traj_netcdf:
 reportInterval: 250
 restart:
 reportInterval: 1000
 progress:
 totalSteps: 10000
 reportInterval: 10
 stream:
 title: md
 reportInterval: 250
 totalSteps: 10000
 step: True
 speed: True
 progress: True
 remainingTime: True

In the above example, we are using the ``stream`` reporter to print the speeds on the intergrator at regular intervals. This may be a bit redudant with the ``progress`` reporter if are running the job remotely and don’t need the information streamed to terminal.

(Optional) Advanced options to the ``traj_netcdf`` reporter

The ``traj_netcdf`` reporter can store additional information that may be useful for the NCMC simulation or record at specific frames. In the example below, we will store the first, midpoint (when the move is applied), and last frame of each NCMC iteration, along with the ``alchemicalLambda`` step and the ``protocolWork``.

ncmc_reporters:
 traj_netcdf:
 frame_indices: [1, 0.5, -1]
 alchemicalLambda: True
 protocolWork: True

To access the numerical data stored in the NetCDF file:

from netCDF4 import Dataset

f = Dataset("t4-toluene-ncmc.nc")
print(f.variables['alchemicalLambda'][:])
print(f.variables['protocolWork'][:])

>>> [0.001 0.5 1.]
>>> [0.03706791 30.72696877 25.708498]

Running a BLUES simulation

Below we will provide an example for running an NPT BLUES simulation which applies random rotational moves to the toluene ligand in T4-lysozyme from a YAML configuration.

[1]:

yaml_cfg = """
output_dir: .
outfname: t4-toluene
logger_level: info

structure:
 filename: ../blues/tests/data/eqToluene.prmtop
 xyz: ../blues/tests/data/eqToluene.inpcrd

system:
 nonbondedMethod: PME
 nonbondedCutoff: 10 * angstroms
 constraints: HBonds
 rigidWater: True
 removeCMMotion: True
 hydrogenMass: 3.024 * daltons
 ewaldErrorTolerance: 0.005
 flexibleConstraints: True
 splitDihedrals: False

freeze:
 freeze_center: ':LIG'
 freeze_solvent: ':WAT,Cl-'
 freeze_distance: 5 * angstroms

simulation:
 platform: CUDA
 properties:
 CudaPrecision: single
 CudaDeviceIndex: 0
 dt: 0.004 * picoseconds
 friction: 1 * 1/picoseconds
 pressure: 1 * atmospheres
 temperature: 300 * kelvin
 nIter: 5
 nstepsMD: 1000
 nstepsNC: 1000

md_reporters:
 state:
 reportInterval: 250
 traj_netcdf:
 reportInterval: 250
 restart:
 reportInterval: 1000
 stream:
 title: md
 reportInterval: 250
 totalSteps: 5000 # nIter * nstepsMD
 step: True
 speed: True
 progress: True
 remainingTime: True

ncmc_reporters:
 stream:
 title: ncmc
 reportInterval: 250
 totalSteps: 1000 # Use nstepsNC
 step: True
 speed: True
 progress: True
 remainingTime: True
"""

Import the following BLUES modules required for the following steps.

	Make sure to specify the type of move that you want to import from blues.moves

	Available moves can be veiwed in moves.py, supported/tested moves include:

	RandomLigandRotationMove

	SideChainMove

[2]:

from blues.moves import RandomLigandRotationMove
from blues.engine import MoveEngine
from blues.simulation import *
from blues.settings import *

[3]:

#Read in the YAML file
cfg = Settings(yaml_cfg).asDict()
#Shortcut to access `parmed.Structure` from dict
structure = cfg['Structure']

./t4-toluene

Below is what the resulting configuration dictionary looks like (formatted into JSON for readability).

[4]:

import json
print(json.dumps(cfg, sort_keys=True, indent=2, skipkeys=True, default=str))

{
 "Logger": "<logging.RootLogger object at 0x7f96b1bff940>",
 "Structure": "../blues/tests/data/eqToluene.prmtop",
 "freeze": {
 "freeze_center": ":LIG",
 "freeze_distance": "5.0 A",
 "freeze_solvent": ":WAT,Cl-"
 },
 "logger_level": "info",
 "md_reporters": [
 "<parmed.openmm.reporters.StateDataReporter object at 0x7f966832c128>",
 "<blues.reporters.NetCDF4Reporter object at 0x7f966574e898>",
 "<parmed.openmm.reporters.RestartReporter object at 0x7f966574e860>",
 "<blues.reporters.BLUESStateDataReporter object at 0x7f966574e828>"
],
 "ncmc_reporters": [
 "<blues.reporters.BLUESStateDataReporter object at 0x7f966574e908>"
],
 "outfname": "./t4-toluene",
 "output_dir": ".",
 "simulation": {
 "dt": "0.004 ps",
 "friction": "1.0 /ps",
 "md_trajectory_interval": 250,
 "moveStep": 500,
 "nIter": 5,
 "nprop": 1,
 "nstepsMD": 1000,
 "nstepsNC": 1000,
 "outfname": "./t4-toluene",
 "platform": "CUDA",
 "pressure": "1.0 atm",
 "propLambda": 0.3,
 "propSteps": 1000,
 "properties": {
 "CudaDeviceIndex": 0,
 "CudaPrecision": "single"
 },
 "temperature": "300.0 K",
 "verbose": false
 },
 "structure": {
 "filename": "../blues/tests/data/eqToluene.prmtop",
 "xyz": "../blues/tests/data/eqToluene.inpcrd"
 },
 "system": {
 "constraints": "HBonds",
 "ewaldErrorTolerance": 0.005,
 "flexibleConstraints": true,
 "hydrogenMass": "3.024 Da",
 "nonbondedCutoff": "10.0 A",
 "nonbondedMethod": "PME",
 "removeCMMotion": true,
 "rigidWater": true,
 "splitDihedrals": false,
 "verbose": false
 },
 "verbose": false
}

Selecting a move and initialize the move engine

Here, we initialize the ``RandomLigandRotationMove`` from the ``blues.moves`` module which proposes random rotations on the toluene ligand. We select the toluene ligand by providing the residue name LIG and the parmed.Structure to select the atoms from. If we begin BLUES from our YAML configuration, the parmed.Structure for our system is generated from the call to startup(). We can access it at the top level with cfg['Structure']

After initialization of the selected move, we pass the move object to the ``MoveEngine`` from the ``blues.engine`` module. The ``MoveEngine`` controls what types of moves will be performed during the NCMC protocol and with a given probability. This will be more useful when we use multiple move types.

[5]:

#Initialize the move class and pass it to the engine
ligand = RandomLigandRotationMove(structure, 'LIG')
ligand_mover = MoveEngine(ligand)

Generating the Systems for openMM: ``SystemFactory``

Next, we must generate the openmm.System from the parmed.Structure by calling the ``SystemFactory`` class from the blues.simulation module. The class must be initialized by providing 3 required arguments:

structure : parmed.Structure
 A chemical structure composed of atoms, bonds, angles, torsions, and
 other topological features.
atom_indices : list of int
 Atom indicies of the move or designated for which the nonbonded forces
 (both sterics and electrostatics components) have to be alchemically
 modified.
config : dict, parameters for generating the `openmm.System for the MD
 and NCMC simulation. For complete parameters, see docs for `generateSystem`
 and `generateAlchSystem`

Upon initialization, this class will create the system for the MD simulation and the NCMC simulation. They can be accessed through the attributes ``systems.md`` or ``systems.alch``. Any modifications to either of these Systems should be done within the context of this object. Once the systems are passed into an openmm.Simulation, you will not be able to modify the system easily.

[6]:

systems = SystemFactory(structure, ligand.atom_indices, cfg['system'])

INFO: Adding bonds...
INFO: Adding angles...
INFO: Adding dihedrals...
INFO: Adding Ryckaert-Bellemans torsions...
INFO: Adding Urey-Bradleys...
INFO: Adding improper torsions...
INFO: Adding CMAP torsions...
INFO: Adding trigonal angle terms...
INFO: Adding out-of-plane bends...
INFO: Adding pi-torsions...
INFO: Adding stretch-bends...
INFO: Adding torsion-torsions...
INFO: Adding Nonbonded force...

(Optional) Applying restraints or freezing atoms

The ``SystemFactory`` class also provides functionality for restraining or freezing the atoms. Use extreme caution when freezing/restraining atoms. You should consider if freezing/restraining should be applied to BOTH the MD and alchemical system.

Selections for either restraining or freezing atoms in your system use the Amber mask syntax [http://parmed.github.io/ParmEd/html/amber.html#amber-mask-syntax].

Positional restraints: ``SystemFactory.restrain_positions()``

To apply positional restraints, you can call ``SystemFactory.restrain_positions()``. You can specify the parameters/selection for applying positional restraints in the YAML file.

restraints:
 selection: '@CA,C,N'
 weight: 5

restrain keywords: - ``selection``: Specify what to apply positional restraints to using Amber mask syntax. Default = ‘@CA,C,N’ - ``weight``: Restraint weight for xyz atom restraints in kcal/(mol A^2). Default = 5

From the YAML example above, we would be applying positional restraints to the backbone atoms of the protein. If applying restraints, you most likely will want to apply it to BOTH the MD and alchemical systems like below:

systems.md = SystemFactory.restrain_positions(structure, systems.md, **cfg['restraints'])
systems.alch = SystemFactory.restrain_positions(structure, systems.alch, **cfg['restraints'])

Freezing selected atoms: ``SystemFactory.freeze_atoms()``

To freeze a selection, call ``SystemFactory.freeze_atoms()``. Atoms that have a mass of zero will be ignored by the integrator and will not change positions during the simulation, effectively they are frozen.

To freeze atoms using a given selection string. Use the keyword ``freeze_selection``.

freeze:
 freeze_selection: ':LIG'

From the YAML example above, we would be freezing only the atoms belonging to the residue LIG. Although freezing the ligand in this example wouldn’t be very useful. It would be applied like

systems.md = SystemFactory.freeze_atoms(structure, systems.md, **cfg['freeze'])

Freezing atoms around a selection: ``SystemFactory.freeze_radius()``

Alternatively, you can choose to freeze atoms around a given selection. To do so, call ``SystemFactory.freeze_radius()``. For example, you may want to freeze atoms that are 5 angstroms away from the ligand and include the solvent.

freeze:
 freeze_center: ':LIG'
 freeze_solvent: ':WAT,Cl-'
 freeze_distance: 5 * angstroms

	``freeze_center``: Specifies the center of the object for freezing, masses will be zeroed. Default = ‘:LIG’

	``freeze_solvent``: select which solvent atoms should have their masses zeroed. Default = ‘:HOH,NA,CL’

	``freeze_distance``: Distance (in angstroms) to select atoms for retaining their masses. Atoms outside the set distance will have their masses set to 0.0. Default = 5.0

We often utilize this type of freezing to speed up the alchemical process during the NCMC simulation while leaving them completely free in the MD simulation for proper relaxation.

systems.alch = SystemFactory.freeze_radius(structure, systems.alch, **cfg['freeze'])

In this notebook example, our YAML config indicates we will be freezing around the ligand (keyword: ``freeze_center``). So we will call the ``freeze_radius`` function.

[7]:

systems.alch = SystemFactory.freeze_radius(structure, systems.alch, **cfg['freeze'])

INFO: Freezing 22065 atoms 5.0 Angstroms from ':LIG' on <simtk.openmm.openmm.System; proxy of <Swig Object of type 'OpenMM::System *' at 0x7f96aa74fab0> >

Generating the OpenMM Simulations: ``SimulationFactory``

Now that we have generated our openmm.System for the MDand frozen the solvent around the ligand. We are now ready to create the set of simulations for running BLUES. We do this by calling the ``SimulationFactory`` class . The expected parameters are:

systems : blues.simulation.SystemFactory object
 The object containing the MD and alchemical openmm.Systems
move_engine : blues.engine.MoveEngine object
 MoveProposal object which contains the dict of moves performed
 in the NCMC simulation.
config : dict of parameters for the simulation (i.e timestep, temperature, etc.)
md_reporters : list of Reporter objects for the MD openmm.Simulation
ncmc_reporters : list of Reporter objects for the NCMC openmm.Simulation

If you wish to use your own openmm reporters, simply pass them into the arguments as a list of Reporter objects. Since we have configured our reporters from the YAML file, we can pass them into the arguments ``md_reporters`` and ``ncmc_reporters``.

[8]:

List of MD reporters
cfg['md_reporters']

[8]:

[<parmed.openmm.reporters.StateDataReporter at 0x7f966832c128>,
 <blues.reporters.NetCDF4Reporter at 0x7f966574e898>,
 <parmed.openmm.reporters.RestartReporter at 0x7f966574e860>,
 <blues.reporters.BLUESStateDataReporter at 0x7f966574e828>]

[9]:

List of NCMC reporters
cfg['ncmc_reporters']

[9]:

[<blues.reporters.BLUESStateDataReporter at 0x7f966574e908>]

[10]:

simulations = SimulationFactory(systems, ligand_mover, cfg['simulation'],
 cfg['md_reporters'], cfg['ncmc_reporters'])

INFO: Adding MonteCarloBarostat with 1.0 atm. MD simulation will be 300.0 K NPT.
WARNING: NCMC simulation will NOT have pressure control. NCMC will use pressure from last MD state.
INFO: OpenMM(7.1.1.dev-c1a64aa) simulation generated for CUDA platform
system = Linux
node = titanpascal
release = 4.13.0-41-generic
version = #46~16.04.1-Ubuntu SMP Thu May 3 10:06:43 UTC 2018
machine = x86_64
processor = x86_64
DeviceIndex = 0
DeviceName = TITAN Xp
UseBlockingSync = true
Precision = single
UseCpuPme = false
CudaCompiler = /usr/local/cuda-8.0/bin/nvcc
TempDirectory = /tmp
CudaHostCompiler =
DisablePmeStream = false
DeterministicForces = false

If you would like to access the MD or NCMC simulation. You can access them as attributes to the ``SimulationFactory`` class with ``simulations.md`` or ``simulations.ncmc``. This will allow you to do things like energy minimize the system or run a few steps of regular dynamics before running the hybrid (MD+NCMC) BLUES approach. The NCMC simulation will automatically be synced to the state of the MD simulation when running the BLUES simulation.

[11]:

Energy minimization
state = simulations.md.context.getState(getPositions=True, getEnergy=True)
print('Pre-Minimized energy = {}'.format(state.getPotentialEnergy().in_units_of(unit.kilocalorie_per_mole)))

simulations.md.minimizeEnergy(maxIterations=0)
state = simulations.md.context.getState(getPositions=True, getEnergy=True)
print('Minimized energy = {}'.format(state.getPotentialEnergy().in_units_of(unit.kilocalorie_per_mole)))

Pre-Minimized energy = -69057.34671058532 kcal/mol
Minimized energy = -87007.38938198877 kcal/mol

[12]:

Running only the MD simulation
simulations.md.step(500)

#"Progress (%)" "Step" "Speed (ns/day)" "Time Remaining"
md: 5.0% 250 0 --
md: 10.0% 500 271 0:05

Run the BLUES Simulation

To run the full BLUES simulation, where we apply NCMC moves and follow-up with the MD simulation, we simply pass the ``SimulationFactory`` object to the ``Simulation`` class and call the ``run()`` function which takes ``nIter``, ``nstepsNC``, ``nstepsMD`` as arguments (or we can pass it the simulation configuration from the YAML on initialization of the class).

[13]:

blues = BLUESSimulation(simulations, cfg['simulation'])
blues.run()

INFO: Total BLUES Simulation Time = 40.0 ps (8.0 ps/Iter)
Total Force Evaluations = 10000
Total NCMC time = 20.0 ps (4.0 ps/iter)
Total MD time = 20.0 ps (4.0 ps/iter)
Trajectory Interval = 2.0 ps/frame (4.0 frames/iter)
INFO: Running 5 BLUES iterations...
INFO: BLUES Iteration: 0
INFO: Advancing 1000 NCMC switching steps...
#"Progress (%)" "Step" "Speed (ns/day)" "Time Remaining"
ncmc: 25.0% 250 0 --
ncmc: 50.0% 500 110 0:01
Performing RandomLigandRotationMove...
ncmc: 75.0% 750 93.3 0:00
ncmc: 100.0% 1000 93 0:00
NCMC MOVE REJECTED: work_ncmc -17.61007128922719 < -3.476065340494845
Advancing 1000 MD steps...
md: 15.0% 750 31.9 0:46
md: 20.0% 1000 43.1 0:32
md: 25.0% 1250 54.8 0:23
md: 30.0% 1500 65.5 0:18
BLUES Iteration: 1
Advancing 1000 NCMC switching steps...
ncmc: 25.0% 250 57.2 --
ncmc: 50.0% 500 62.6 0:13
Performing RandomLigandRotationMove...
ncmc: 75.0% 750 65.4 0:03
ncmc: 100.0% 1000 69.1 0:00
NCMC MOVE REJECTED: work_ncmc -28.930984747001787 < -2.602259467723195
Advancing 1000 MD steps...
md: 35.0% 1750 45.5 0:24
md: 40.0% 2000 50.5 0:20
md: 45.0% 2250 56.3 0:16
md: 50.0% 2500 61.9 0:13
BLUES Iteration: 2
Advancing 1000 NCMC switching steps...
ncmc: 25.0% 250 57.9 --
ncmc: 50.0% 500 60.1 0:25
Performing RandomLigandRotationMove...
ncmc: 75.0% 750 62.4 0:06
ncmc: 100.0% 1000 64.6 0:00
NCMC MOVE REJECTED: work_ncmc -9.178847171172448 < -0.3081492900307722
Advancing 1000 MD steps...
md: 55.0% 2750 49.7 0:15
md: 60.0% 3000 53.1 0:13
md: 65.0% 3250 56.7 0:10
md: 70.0% 3500 60.4 0:08
BLUES Iteration: 3
Advancing 1000 NCMC switching steps...
ncmc: 25.0% 250 58.4 --
ncmc: 50.0% 500 60.4 0:37
Performing RandomLigandRotationMove...
ncmc: 75.0% 750 61.6 0:09
ncmc: 100.0% 1000 63.6 0:00
NCMC MOVE REJECTED: work_ncmc -6.022089748510081 < -0.28447339331708726
Advancing 1000 MD steps...
md: 75.0% 3750 52.6 0:08
md: 80.0% 4000 55 0:06
md: 85.0% 4250 58 0:04
md: 90.0% 4500 60.8 0:02
BLUES Iteration: 4
Advancing 1000 NCMC switching steps...
ncmc: 25.0% 250 58.6 --
ncmc: 50.0% 500 59.8 0:49
Performing RandomLigandRotationMove...
ncmc: 75.0% 750 60.7 0:12
ncmc: 100.0% 1000 61.9 0:00
NCMC MOVE REJECTED: work_ncmc -63.43688730563919 < -0.5417610940298393
Advancing 1000 MD steps...
md: 95.0% 4750 53.3 0:01
md: 100.0% 5000 55.2 0:00
md: 105.0% 5250 57.5 23:59:59
md: 110.0% 5500 59.8 23:59:58
Acceptance Ratio: 0.0
nIter: 5

[]:

 Python Module Index

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 blues	

 	
 	
 blues.formats	

 	
 	
 blues.integrators	

 	
 	
 blues.moves	

 	
 	
 blues.reporters	

 	
 	
 blues.simulation	

 	
 	
 blues.utils	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | W
 | Z

_

 	
 	_acceptRejectMove() (blues.simulation.BLUESSimulation method)

 	_computeAlchemicalCorrection() (blues.simulation.BLUESSimulation method)

 	_kinetic_energy (blues.integrators.AlchemicalExternalLangevinIntegrator attribute)

 	_printSimulationTiming() (blues.simulation.BLUESSimulation method)

 	
 	_resetSimulations() (blues.simulation.BLUESSimulation method)

 	_setStateTable() (blues.simulation.BLUESSimulation method)

 	_stepMD() (blues.simulation.BLUESSimulation method)

 	_stepNCMC() (blues.simulation.BLUESSimulation method)

 	_syncStatesMDtoNCMC() (blues.simulation.BLUESSimulation method)

A

 	
 	add_alchemicalLambda() (blues.formats.NetCDF4Traj method)

 	add_protocolWork() (blues.formats.NetCDF4Traj method)

 	addBarostat() (blues.simulation.SimulationFactory class method)

 	addLoggingLevel() (in module blues.reporters)

 	afterMove() (blues.moves.Move method)

 	AlchemicalExternalLangevinIntegrator (class in blues.integrators)

 	
 	alchemicalLambda() (blues.formats.NetCDF4Traj property)

 	all_atoms (blues.moves.SideChainMove attribute)

 	amber_selection_to_atomidx() (blues.simulation.SystemFactory static method)

 	atom_indices (blues.moves.RandomLigandRotationMove attribute)

 	atomidx_to_atomlist() (blues.simulation.SystemFactory static method)

 	atomIndexfromTop() (in module blues.utils)

 	attachReporters() (blues.simulation.SimulationFactory static method)

B

 	
 	beforeMove() (blues.moves.Move method)

 	
 blues.formats

 	module

 	
 blues.integrators

 	module

 	
 blues.moves

 	module

 	
 blues.reporters

 	module

 	
 	
 blues.simulation

 	module

 	
 blues.utils

 	module

 	BLUESHDF5Reporter (class in blues.reporters)

 	BLUESHDF5TrajectoryFile (class in blues.formats)

 	BLUESSimulation (class in blues.simulation)

 	BLUESStateDataReporter (class in blues.reporters)

C

 	
 	calculateNCMCSteps() (in module blues.utils)

 	center_of_mass (blues.moves.RandomLigandRotationMove attribute)

 	
 	check_amber_selection() (in module blues.utils)

 	chooseBondandTheta() (blues.moves.SideChainMove method)

 	CombinationMove (class in blues.moves)

D

 	
 	dartsFromParmEd() (blues.moves.SmartDartMove method)

 	describeNextReport() (blues.reporters.BLUESHDF5Reporter method)

 	(blues.reporters.BLUESStateDataReporter method)

 	(blues.reporters.NetCDF4Reporter method)

F

 	
 	findHeavyRotBonds() (blues.moves.SideChainMove method)

 	flush() (blues.formats.NetCDF4Traj method)

 	
 	format() (blues.formats.LoggerFormatter method)

 	freeze_atoms() (blues.simulation.SystemFactory class method)

 	freeze_radius() (blues.simulation.SystemFactory class method)

G

 	
 	generateAlchSystem() (blues.simulation.SystemFactory class method)

 	generateIntegrator() (blues.simulation.SimulationFactory class method)

 	generateNCMCIntegrator() (blues.simulation.SimulationFactory class method)

 	generateSimFromStruct() (blues.simulation.SimulationFactory class method)

 	generateSimulationSet() (blues.simulation.SimulationFactory method)

 	generateSystem() (blues.simulation.SystemFactory class method)

 	get_data_filename() (in module blues.utils)

 	getAtomIndices() (blues.moves.RandomLigandRotationMove method)

 	
 	getBackboneAtoms() (blues.moves.SideChainMove method)

 	getCenterOfMass() (blues.moves.RandomLigandRotationMove method)

 	getIntegratorInfo() (blues.simulation.BLUESSimulation class method)

 	getMasses() (blues.moves.RandomLigandRotationMove method)

 	getRotAtoms() (blues.moves.SideChainMove method)

 	getRotBondAtoms() (blues.moves.SideChainMove method)

 	getStateFromContext() (blues.simulation.BLUESSimulation class method)

 	getTargetAtoms() (blues.moves.SideChainMove method)

I

 	
 	init_logger() (in module blues.reporters)

 	
 	initializeSystem() (blues.moves.Move method)

L

 	
 	LoggerFormatter (class in blues.formats)

M

 	
 	makeReporters() (blues.reporters.ReporterConfig method)

 	masses (blues.moves.RandomLigandRotationMove attribute)

 	
 module

 	blues.formats

 	blues.integrators

 	blues.moves

 	blues.reporters

 	blues.simulation

 	blues.utils

 	
 	molecule (blues.moves.SideChainMove attribute)

 	Move (class in blues.moves)

 	move() (blues.moves.CombinationMove method)

 	(blues.moves.Move method)

 	(blues.moves.RandomLigandRotationMove method)

 	(blues.moves.SideChainMove method)

 	(blues.moves.SmartDartMove method)

 	move_name (blues.moves.MoveEngine attribute)

 	MoveEngine (class in blues.moves)

 	moves (blues.moves.MoveEngine attribute)

N

 	
 	NetCDF4Reporter (class in blues.reporters)

 	
 	NetCDF4Traj (class in blues.formats)

O

 	
 	open_new() (blues.formats.NetCDF4Traj class method)

P

 	
 	parse_unit_quantity() (in module blues.utils)

 	positions (blues.moves.RandomLigandRotationMove attribute)

 	
 	print_host_info() (in module blues.utils)

 	probabilities (blues.moves.MoveEngine attribute)

 	protocolWork() (blues.formats.NetCDF4Traj property)

Q

 	
 	qry_atoms (blues.moves.SideChainMove attribute)

R

 	
 	RandomLigandRotationMove (class in blues.moves)

 	report() (blues.reporters.BLUESHDF5Reporter method)

 	(blues.reporters.BLUESStateDataReporter method)

 	(blues.reporters.NetCDF4Reporter method)

 	ReporterConfig (class in blues.reporters)

 	reset() (blues.integrators.AlchemicalExternalLangevinIntegrator method)

 	residue_list (blues.moves.SideChainMove attribute)

 	
 	resname (blues.moves.RandomLigandRotationMove attribute)

 	restrain_positions() (blues.simulation.SystemFactory class method)

 	rot_atoms (blues.moves.SideChainMove attribute)

 	rot_bonds (blues.moves.SideChainMove attribute)

 	rotation_matrix() (blues.moves.SideChainMove method)

 	run() (blues.simulation.BLUESSimulation method)

 	runEngine() (blues.moves.MoveEngine method)

S

 	
 	saveSimulationFrame() (in module blues.utils)

 	selected_move (blues.moves.MoveEngine attribute)

 	selectMove() (blues.moves.MoveEngine method)

 	setContextFromState() (blues.simulation.BLUESSimulation class method)

 	SideChainMove (class in blues.moves)

 	
 	SimulationFactory (class in blues.simulation)

 	SmartDartMove (class in blues.moves)

 	spreadLambdaProtocol() (in module blues.utils)

 	structure (blues.moves.RandomLigandRotationMove attribute)

 	(blues.moves.SideChainMove attribute)

 	SystemFactory (class in blues.simulation)

T

 	
 	topology (blues.moves.RandomLigandRotationMove attribute)

 	
 	totalmass (blues.moves.RandomLigandRotationMove attribute)

W

 	
 	write() (blues.formats.BLUESHDF5TrajectoryFile method)

Z

 	
 	zero_masses() (in module blues.utils)

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to the BLUES documentation!

 		
 Introduction

 		
 Github

 		
 Publication

 		
 Theory

 		
 Installation

 		
 Stable Releases

 		
 Development Builds

 		
 Source Installation

 		
 Modules

 		
 Moves

 		
 Move

 		
 RandomLigandRotationMove

 		
 MoveEngine

 		
 Under Development

 		
 Simulation

 		
 SystemFactory

 		
 SimulationFactory

 		
 BLUESSimulation

 		
 Integrators

 		
 Utilities

 		
 Reporters

 		
 Formats

 		
 Tutorial

 		
 Introduction to BLUES

 		
 Background

 		
 Coupling MD simulations with random NCMC moves for enhanced sampling of ligand binding modes via BLUES

 		
 YAML Configuration

 		
 Input/Output

 		
 System configuration

 		
 Simulation Configuration

 		
 Reporter Configuration

 		
 Running a BLUES simulation

 		
 Selecting a move and initialize the move engine

 		
 Generating the Systems for openMM: ``SystemFactory``

 		
 Generating the OpenMM Simulations: ``SimulationFactory``

